-
Current Neuropharmacology 2016Acetylcholine (ACh) has a crucial role in the peripheral and central nervous systems. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing ACh... (Review)
Review
Acetylcholine (ACh) has a crucial role in the peripheral and central nervous systems. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic vesicles. Following depolarization, ACh undergoes exocytosis reaching the synaptic cleft, where it can bind its receptors, including muscarinic and nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is recycled into the presynaptic nerve terminal by the high-affinity choline transporter (CHT1). Cholinergic neurons located in the basal forebrain, including the neurons that form the nucleus basalis of Meynert, are severely lost in Alzheimer's disease (AD). AD is the most ordinary cause of dementia affecting 25 million people worldwide. The hallmarks of the disease are the accumulation of neurofibrillary tangles and amyloid plaques. However, there is no real correlation between levels of cortical plaques and AD-related cognitive impairment. Nevertheless, synaptic loss is the principal correlate of disease progression and loss of cholinergic neurons contributes to memory and attention deficits. Thus, drugs that act on the cholinergic system represent a promising option to treat AD patients.
Topics: Acetylcholine; Alzheimer Disease; Animals; Cholinergic Agents; Cholinergic Neurons; Cholinesterase Inhibitors; Drug Delivery Systems; Humans; Receptors, Cholinergic
PubMed: 26813123
DOI: 10.2174/1570159x13666150716165726 -
Brain : a Journal of Neurology Jul 2018Cholinergic synapses are ubiquitous in the human central nervous system. Their high density in the thalamus, striatum, limbic system, and neocortex suggest that... (Review)
Review
Cholinergic synapses are ubiquitous in the human central nervous system. Their high density in the thalamus, striatum, limbic system, and neocortex suggest that cholinergic transmission is likely to be critically important for memory, learning, attention and other higher brain functions. Several lines of research suggest additional roles for cholinergic systems in overall brain homeostasis and plasticity. As such, the brain's cholinergic system occupies a central role in ongoing research related to normal cognition and age-related cognitive decline, including dementias such as Alzheimer's disease. The cholinergic hypothesis of Alzheimer's disease centres on the progressive loss of limbic and neocortical cholinergic innervation. Neurofibrillary degeneration in the basal forebrain is believed to be the primary cause for the dysfunction and death of forebrain cholinergic neurons, giving rise to a widespread presynaptic cholinergic denervation. Cholinesterase inhibitors increase the availability of acetylcholine at synapses in the brain and are one of the few drug therapies that have been proven clinically useful in the treatment of Alzheimer's disease dementia, thus validating the cholinergic system as an important therapeutic target in the disease. This review includes an overview of the role of the cholinergic system in cognition and an updated understanding of how cholinergic deficits in Alzheimer's disease interact with other aspects of disease pathophysiology, including plaques composed of amyloid-β proteins. This review also documents the benefits of cholinergic therapies at various stages of Alzheimer's disease and during long-term follow-up as visualized in novel imaging studies. The weight of the evidence supports the continued value of cholinergic drugs as a standard, cornerstone pharmacological approach in Alzheimer's disease, particularly as we look ahead to future combination therapies that address symptoms as well as disease progression.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Cholinergic Agents; Cholinergic Neurons; Cholinesterase Inhibitors; Cognition; Cognition Disorders; Humans; Neurofibrillary Tangles
PubMed: 29850777
DOI: 10.1093/brain/awy132 -
Molecules (Basel, Switzerland) Mar 2022Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer's disease (AD), a... (Review)
Review
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer's disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Topics: Acetylcholine; Alzheimer Disease; Cholinergic Agents; Humans; Neurodegenerative Diseases; Signal Transduction
PubMed: 35335180
DOI: 10.3390/molecules27061816 -
Nature Reviews. Neuroscience Apr 2023Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have... (Review)
Review
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Topics: Humans; Acetylcholine; Basal Forebrain; Cholinergic Agents; Cognition; Signal Transduction
PubMed: 36823458
DOI: 10.1038/s41583-023-00677-x -
Neuron Nov 2022Cholinergic neurons in the medial septum (MS) constitute a major source of cholinergic input to the forebrain and modulate diverse functions, including sensory...
Cholinergic neurons in the medial septum (MS) constitute a major source of cholinergic input to the forebrain and modulate diverse functions, including sensory processing, memory, and attention. Most studies to date have treated cholinergic neurons as a single population; as such, the organizational principles underling their functional diversity remain unknown. Here, we identified two subsets (D28K versus D28K) of cholinergic neurons that are topographically segregated in mice, Macaca fascicularis, and humans. These cholinergic subpopulations possess unique electrophysiological signatures, express mutually exclusive marker genes (kcnh1 and aifm3 versus cacna1h and gga3), and make differential connections with physiologically distinct neuronal classes in the hippocampus to form two structurally defined and functionally distinct circuits. Gain- and loss-of-function studies on these circuits revealed their differential roles in modulation of anxiety-like behavior and spatial memory. These results provide a molecular and circuitry-based theory for how cholinergic neurons contribute to their diverse behavioral functions.
Topics: Humans; Mice; Animals; Cholinergic Neurons; Cholinergic Agents; Prosencephalon; Hippocampus
PubMed: 36130594
DOI: 10.1016/j.neuron.2022.08.025 -
American Journal of Clinical Dermatology Jan 2023Cholinergic urticaria (CholU) is a subtype of chronic inducible urticaria with a chief complaint of itching and/or stinging, painful papular wheals that develop... (Review)
Review
Cholinergic urticaria (CholU) is a subtype of chronic inducible urticaria with a chief complaint of itching and/or stinging, painful papular wheals that develop simultaneously with sweating. This review specifically focuses on several subtypes of CholU and specifically investigates the relationship between CholU and anhidrosis. We review recent publications and update the evidence around CholU, including the epidemiology, clinical features, diagnostic approaches, physiopathology, subtype classification, and therapeutic approaches. Multiple mechanisms contribute in a complex manner to the development of CholU, including histamine, sweat allergy, cholinergic-related substances, poral occlusion, and hypohidrosis/anhidrosis. A new schematic of the currently known pathological conditions has been created. Specific methods for diagnosing CholU, a provocation test, and evaluation methods for disease severity/activity and disease burden of CholU are summarized. The characteristics of the diseases that should be differentiated from CholU and examination methods are also summarized. The primary finding of this review is that CholU should be categorized based on the etiology and clinical characteristics of each subtype to properly manage and treat the disease. This categorization leads to improvement of therapeutic resistance status of this disease. In particular, a sweating abnormality should be given more attention when examining patients with CholU. Because CholU is not a homogeneous disease, its subtype classification is important for selection of the most suitable therapeutic method. Further elucidation of the pathophysiology of each subtype is expected.
Topics: Humans; Hypohidrosis; Urticaria; Sweating; Sweat; Cholinergic Agents
PubMed: 36107396
DOI: 10.1007/s40257-022-00728-6 -
Journal of Neurochemistry Aug 2017This special issue is a companion to the meeting 'XVth International Symposium on Cholinergic Mechanisms', and is edited by Israel Silman, Marco Prado and Pascale... (Review)
Review
This special issue is a companion to the meeting 'XVth International Symposium on Cholinergic Mechanisms', and is edited by Israel Silman, Marco Prado and Pascale Marchot. In the review articles, renowned researchers in the field capture key mechanisms of cholinergic neurotransmission, from genomic amplification of cholinesterase genes, splicing and post-translational modifications; features of the neuromuscular junction, implications of cholinergic circuitry that are relevant to addiction, anxiety and mood, to preclinical models, protein biomarkers, and clinical findings that are relevant to pathology, for example, developmental neurotoxicity. The broad variety of features reflects the impact of cholinergic mechanisms on many physiological events and emphasizes the importance of research in this area. This is the Preface for the special issue XVth International Symposium on Cholinergic Mechanisms.
Topics: Acetylcholine; Animals; Behavior, Addictive; Cholinergic Agents; Humans; Neuromuscular Junction; Neurotoxicity Syndromes; Synaptic Transmission
PubMed: 28791707
DOI: 10.1111/jnc.14027 -
Neuron Nov 2023Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility...
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Topics: Rats; Animals; Humans; Analgesics, Opioid; Chronic Pain; Acetylcholine; Rats, Sprague-Dawley; Pain Measurement; Drug Tolerance; Periaqueductal Gray; Cholinergic Agents; Receptors, Nicotinic
PubMed: 37734381
DOI: 10.1016/j.neuron.2023.08.017 -
Journal of the American Society of... Dec 2022The kidneys critically contribute to body homeostasis under the control of the autonomic nerves, which enter the kidney along the renal vasculature. Although the renal...
BACKGROUND
The kidneys critically contribute to body homeostasis under the control of the autonomic nerves, which enter the kidney along the renal vasculature. Although the renal sympathetic and sensory nerves have long been confirmed, no significant anatomic evidence exists for renal parasympathetic innervation.
METHODS
We identified cholinergic nerve varicosities associated with the renal vasculature and pelvis using various anatomic research methods, including a genetically modified mouse model and immunostaining. Single-cell RNA sequencing (scRNA-Seq) was used to analyze the expression of in the renal artery and its segmental branches. To assess the origins of parasympathetic projecting nerves of the kidney, we performed retrograde tracing using recombinant adeno-associated virus (AAV) and pseudorabies virus (PRV), followed by imaging of whole brains, spinal cords, and ganglia.
RESULTS
We found that cholinergic axons supply the main renal artery, segmental renal artery, and renal pelvis. On the renal artery, the newly discovered cholinergic nerve fibers are separated not only from the sympathetic nerves but also from the sensory nerves. We also found cholinergic ganglion cells within the renal nerve plexus. Moreover, the scRNA-Seq analysis suggested that acetylcholine receptors (AChRs) are expressed in the renal artery and its segmental branches. In addition, retrograde tracing suggested vagus afferents conduct the renal sensory pathway to the nucleus of the solitary tract (NTS), and vagus efferents project to the kidney.
CONCLUSIONS
Cholinergic nerves supply renal vasculature and renal pelvis, and a vagal brain-kidney axis is involved in renal innervation.
Topics: Mice; Animals; Sympathetic Nervous System; Kidney; Spinal Cord; Pelvis; Cholinergic Agents
PubMed: 36253054
DOI: 10.1681/ASN.2021111518 -
Neuron Sep 2022Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences...
Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.
Topics: Animals; Brain; Cholinergic Agents; Mice; Nervous System Diseases; Neuronal Plasticity; Vagus Nerve Stimulation
PubMed: 35858623
DOI: 10.1016/j.neuron.2022.06.017