-
Molecular Diagnosis & Therapy Dec 2020Obesity represents a major health burden to both developed and developing countries. Furthermore, the incidence of obesity is increasing in children. Obesity contributes... (Review)
Review
Obesity represents a major health burden to both developed and developing countries. Furthermore, the incidence of obesity is increasing in children. Obesity contributes substantially to mortality in the United States by increasing the risk for type 2 diabetes, cardiovascular-related diseases, and other comorbidities. Despite environmental changes over past decades, including increases in high-calorie foods and sedentary lifestyles, there is very clear evidence of a genetic predisposition to obesity risk. Childhood obesity cases can be categorized in one of two ways: syndromic or non-syndromic. Syndromic obesity includes disorders such as Prader-Willi syndrome, Bardet-Biedl syndrome, and Alström syndrome. Non-syndromic cases of obesity can be further separated into rarer instances of monogenic obesity and much more common forms of polygenic obesity. The advent of genome-wide association studies (GWAS) and next-generation sequencing has driven significant advances in our understanding of the genetic contribution to childhood obesity. Many rare and common genetic variants have been shown to contribute to the heritability in obesity, although the molecular mechanisms underlying most of these variants remain unclear. An important caveat of GWAS efforts is that they do not strictly represent gene target discoveries, rather simply the uncovering of robust genetic signals. One clear example of this is with progress in understanding the key obesity signal harbored within an intronic region of the FTO gene. It has been shown that the non-coding region in which the variant actually resides in fact influences the expression of genes distal to FTO instead, specifically IRX3 and IRX5. Such discoveries suggest that associated non-coding variants can be embedded within or next to one gene, but commonly influence the expression of other, more distal effector genes. Advances in genetics and genomics are therefore contributing to a deeper understanding of childhood obesity, allowing for development of clinical tools and therapeutic agents.
Topics: Child; Genetic Predisposition to Disease; Genetic Variation; Genome-Wide Association Study; Humans; Multifactorial Inheritance; Pediatric Obesity; Risk Factors
PubMed: 33006084
DOI: 10.1007/s40291-020-00496-1 -
The Lancet. Diabetes & Endocrinology Dec 2022Impaired cilial signalling in the melanocortin-4 receptor (MC4R) pathway might contribute to obesity in patients with Bardet-Biedl syndrome and Alström syndrome, rare... (Randomized Controlled Trial)
Randomized Controlled Trial
Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alström syndrome: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period.
BACKGROUND
Impaired cilial signalling in the melanocortin-4 receptor (MC4R) pathway might contribute to obesity in patients with Bardet-Biedl syndrome and Alström syndrome, rare genetic diseases associated with hyperphagia and early-onset severe obesity. We aimed to evaluate the effect of setmelanotide on bodyweight in these patients.
METHODS
This multicentre, randomised, 14-week double-blind, placebo-controlled, phase 3 trial followed by a 52-week open-label period, was performed at 12 sites (hospitals, clinics, and universities) in the USA, Canada, the UK, France, and Spain. Patients aged 6 years or older were included if they had a clinical diagnosis of Bardet-Biedl syndrome or Alström syndrome and obesity (defined as BMI >97th percentile for age and sex for those aged 6-15 years and ≥30 kg/m for those aged ≥16 years). Patients were randomly assigned (1:1) using a numerical randomisation code to receive up to 3·0 mg of subcutaneous setmelanotide or placebo once per day during the 14-week double-blind period, followed by open-label setmelanotide for 52 weeks. The primary endpoint, measured in the full analysis set, was the proportion of patients aged 12 years or older who reached at least a 10% reduction in bodyweight from baseline after 52 weeks of setmelanotide treatment. This study is registered with ClinicalTrials.gov, NCT03746522.
FINDINGS
Between Dec 10, 2018, and Nov 25, 2019, 38 patients were enrolled and randomly assigned to receive setmelanotide (n=19) or placebo (n=19; 16 with Bardet-Biedl syndrome and three with Alström syndrome in each group). In terms of the primary endpoint, 32·3% (95% CI 16·7 to 51·4; p=0·0006) of patients aged 12 years or older with Bardet-Biedl syndrome reached at least a 10% reduction in bodyweight after 52 weeks of setmelanotide. The most commonly reported treatment-emergent adverse events were skin hyperpigmentation (23 [61%] of 38) and injection site erythema (18 [48%]). Two patients had four serious adverse events (blindness, anaphylactic reaction, and suicidal ideation); none were considered related to setmelanotide treatment.
INTERPRETATION
Setmelanotide resulted in significant bodyweight reductions in patients with Bardet-Biedl syndrome; however, these results were inconclusive in patients with Alström syndrome. These results support the use of setmelanotide and provided the necessary evidence for approval of this drug as the first treatment for obesity in patients with Bardet-Biedl syndrome.
FUNDING
Rhythm Pharmaceuticals.
Topics: Humans; Receptor, Melanocortin, Type 4; Alstrom Syndrome; Bardet-Biedl Syndrome; Treatment Outcome; Obesity
PubMed: 36356613
DOI: 10.1016/S2213-8587(22)00277-7 -
Journal of Medical Genetics Dec 2023Alström syndrome (ALMS; #203800) is an ultrarare monogenic recessive disease. This syndrome is associated with variants in the gene, which encodes a... (Meta-Analysis)
Meta-Analysis
BACKGROUND
Alström syndrome (ALMS; #203800) is an ultrarare monogenic recessive disease. This syndrome is associated with variants in the gene, which encodes a centrosome-associated protein involved in the regulation of several ciliary and extraciliary processes, such as centrosome cohesion, apoptosis, cell cycle control and receptor trafficking. The type of variant associated with ALMS is mostly complete loss-of-function variants (97%) and they are mainly located in exons 8, 10 and 16 of the gene. Other studies in the literature have tried to establish a genotype-phenotype correlation in this syndrome with limited success. The difficulty in recruiting a large cohort in rare diseases is the main barrier to conducting this type of study.
METHODS
In this study we collected all cases of ALMS published to date. We created a database of patients who had a genetic diagnosis and an individualised clinical history. Lastly, we attempted to establish a genotype-phenotype correlation using the truncation site of the patient's longest allele as a grouping criteria.
RESULTS
We collected a total of 357 patients, of whom 227 had complete clinical information, complete genetic diagnosis and meta-information on sex and age. We have seen that there are five variants with high frequency, with p.(Arg2722Ter) being the most common variant, with 28 alleles. No gender differences in disease progression were detected. Finally, truncating variants in exon 10 seem to be correlated with a higher prevalence of liver disorders in patients with ALMS.
CONCLUSION
Pathogenic variants in exon 10 of the gene were associated with a higher prevalence of liver disease. However, the location of the variant in the gene does not have a major impact on the phenotype developed by the patient.
Topics: Humans; Alstrom Syndrome; Cell Cycle Proteins; Phenotype; Exons; Genetic Association Studies
PubMed: 37321834
DOI: 10.1136/jmg-2023-109175 -
Human Mutation Jul 2017We developed a variant database for diabetes syndrome genes, using the Leiden Open Variation Database platform, containing observed phenotypes matched to the genetic...
We developed a variant database for diabetes syndrome genes, using the Leiden Open Variation Database platform, containing observed phenotypes matched to the genetic variations. We populated it with 628 published disease-associated variants (December 2016) for: WFS1 (n = 309), CISD2 (n = 3), ALMS1 (n = 268), and SLC19A2 (n = 48) for Wolfram type 1, Wolfram type 2, Alström, and Thiamine-responsive megaloblastic anemia syndromes, respectively; and included 23 previously unpublished novel germline variants in WFS1 and 17 variants in ALMS1. We then investigated genotype-phenotype relations for the WFS1 gene. The presence of biallelic loss-of-function variants predicted Wolfram syndrome defined by insulin-dependent diabetes and optic atrophy, with a sensitivity of 79% (95% CI 75%-83%) and specificity of 92% (83%-97%). The presence of minor loss-of-function variants in WFS1 predicted isolated diabetes, isolated deafness, or isolated congenital cataracts without development of the full syndrome (sensitivity 100% [93%-100%]; specificity 78% [73%-82%]). The ability to provide a prognostic prediction based on genotype will lead to improvements in patient care and counseling. The development of the database as a repository for monogenic diabetes gene variants will allow prognostic predictions for other diabetes syndromes as next-generation sequencing expands the repertoire of genotypes and phenotypes. The database is publicly available online at https://lovd.euro-wabb.org.
Topics: Adolescent; Adult; Anemia, Megaloblastic; Child; Child, Preschool; Databases, Genetic; Diabetes Mellitus; Exons; Family Health; Female; Genetic Association Studies; Genetic Variation; Genotype; Hearing Loss, Sensorineural; Homozygote; Humans; Male; Phenotype; Prognosis; Sensitivity and Specificity; Thiamine Deficiency; Wolfram Syndrome; Young Adult
PubMed: 28432734
DOI: 10.1002/humu.23233 -
Cold Spring Harbor Perspectives in... Jul 2017The ciliopathies Bardet-Biedl syndrome and Alström syndrome cause obesity. How ciliary dysfunction leads to obesity has remained mysterious, partly because of a lack of... (Review)
Review
The ciliopathies Bardet-Biedl syndrome and Alström syndrome cause obesity. How ciliary dysfunction leads to obesity has remained mysterious, partly because of a lack of understanding of the physiological roles of primary cilia in the organs and pathways involved in the regulation of metabolism and energy homeostasis. Historically, the study of rare monogenetic disorders that present with obesity has informed our molecular understanding of the mechanisms involved in nonsyndromic forms of obesity. Here, we present a framework, based on genetic studies in mice and humans, of the molecular and cellular pathways underlying long-term regulation of energy homeostasis. We focus on recent progress linking these pathways to the function of the primary cilia with a particular emphasis on the roles of neuronal primary cilia in the regulation of satiety.
Topics: Alstrom Syndrome; Animals; Bardet-Biedl Syndrome; Cilia; Energy Metabolism; Humans; Mice; Obesity; Satiety Response
PubMed: 28096262
DOI: 10.1101/cshperspect.a028217 -
Orphanet Journal of Rare Diseases Sep 2022Alström syndrome (ALMS) is a rare autosomal recessive genetic disorder that is caused by homozygous or compound heterozygous mutation in the ALMS1 gene. Dilated... (Review)
Review
OBJECTIVE
Alström syndrome (ALMS) is a rare autosomal recessive genetic disorder that is caused by homozygous or compound heterozygous mutation in the ALMS1 gene. Dilated cardiomyopathy (DCM) is one of the well-recognized features of the syndrome ranging from sudden-onset infantile DCM to adult-onset cardiomyopathy, sometimes of the restrictive hypertrophic form with a poor prognosis. We aimed to evaluate severe cardiomyopathy in Alström syndrome in infancy and display susceptible specific mutations of the disease, which may be linked to severe DCM. Secondarily we reviewed published mutations in ALMS1 with cardiomyopathies in the literature.
METHOD
We represent new mutagenic alleles related to severe cardiomyopathy and cardiac outcome in this patient cohort. We evaluated echocardiographic studies of nine Turkish patients diagnosed with Alström syndrome (between 2014 and 2020, at age two weeks to twenty years). Thus, we examined the cardiac manifestations of a single-centre prospective series of nine children with specific ALMS mutations and multisystem involvement. All patients underwent genetic and biochemical testing, electrocardiograms, and echocardiographic imaging to evaluate systolic strain with speckle tracking.
RESULTS
Four of the patients died from cardiomyopathy. Three patients (including three of the four fatalities) with the same mutation (c.7911dupC [p.Asn2638Glnfs*24]) had cardiomyopathy with intra-familial variability in the severity of cardiomyopathy. Global longitudinal strain, a measure of systolic contractile function, was abnormal in all patients that can be measured.
CONCLUSION
Cardiac function in ALMS patients with infantile cardiomyopathy appears to have different clinical spectrums depending on the mutagenic allele. The c.7911dupC (p. Asn2638Glnfs*24) mutation can be related to severe cardiomyopathy. Parents can be informed and consulted about the progression of severe cardiomyopathy in a child carrying this mutagenic allele.
Topics: Adult; Alstrom Syndrome; Cardiomyopathies; Cardiomyopathy, Dilated; Child; Homozygote; Humans; Mutation
PubMed: 36109815
DOI: 10.1186/s13023-022-02483-7 -
Journal of Molecular Medicine (Berlin,... Jan 2019Alström syndrome (AS) is characterised by metabolic deficits, retinal dystrophy, sensorineural hearing loss, dilated cardiomyopathy and multi-organ fibrosis.... (Review)
Review
Alström syndrome (AS) is characterised by metabolic deficits, retinal dystrophy, sensorineural hearing loss, dilated cardiomyopathy and multi-organ fibrosis. Elucidating the function of the mutated gene, ALMS1, is critical for the development of specific treatments and may uncover pathways relevant to a range of other disorders including common forms of obesity and type 2 diabetes. Interest in ALMS1 is heightened by the recent discovery of its involvement in neonatal cardiomyocyte cell cycle arrest, a process with potential relevance to regenerative medicine. ALMS1 encodes a ~ 0.5 megadalton protein that localises to the base of centrioles. Some studies have suggested a role for this protein in maintaining centriole-nucleated sensory organelles termed primary cilia, and AS is now considered to belong to the growing class of human genetic disorders linked to ciliary dysfunction (ciliopathies). However, mechanistic details are lacking, and recent studies have implicated ALMS1 in several processes including endosomal trafficking, actin organisation, maintenance of centrosome cohesion and transcription. In line with a more complex picture, multiple isoforms of the protein likely exist and non-centrosomal sites of localisation have been reported. This review outlines the evidence for both ciliary and extra-ciliary functions of ALMS1.
Topics: Alstrom Syndrome; Amino Acid Sequence; Animals; Cell Cycle Proteins; Gene Expression Regulation; Humans; Protein Interaction Maps; Protein Isoforms
PubMed: 30421101
DOI: 10.1007/s00109-018-1714-x -
Yonago Acta Medica May 2024Alström syndrome is a form of inherited obesity caused by a single gene abnormality and is inherited as an autosomal recessive trait. It is characterised by a variety... (Review)
Review
Alström syndrome is a form of inherited obesity caused by a single gene abnormality and is inherited as an autosomal recessive trait. It is characterised by a variety of clinical manifestations, including progressive visual and hearing impairment, type 2 diabetes mellitus, dilated cardiomyopathy, and hepatic and renal dysfunction, in addition to obesity. Recent insights underline the pivotal involvement of the disease-associated gene () in cilia formation and function, leading to the classification of its clinical manifestations as a ciliopathy. This review delineates the diverse clinical indicators defining the syndrome and elucidates its pathological underpinnings.
PubMed: 38803594
DOI: 10.33160/yam.2024.05.010 -
Human Genomics May 2016O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T....
O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents R. Polimanti, J. Gelernter O3 Effects of prenatal environment, genotype and DNA methylation on birth weight and subsequent postnatal outcomes: findings from GUSTO, an Asian birth cohort X. Lin, I. Y. Lim, Y. Wu, A. L. Teh, L. Chen, I. M. Aris, S. E. Soh, M. T. Tint, J. L. MacIsaac, F. Yap, K. Kwek, S. M. Saw, M. S. Kobor, M. J. Meaney, K. M. Godfrey, Y. S. Chong, J. D. Holbrook, Y. S. Lee, P. D. Gluckman, N. Karnani, GUSTO study group O4 High-throughput identification of specific qt interval modulating enhancers at the SCN5A locus A. Kapoor, D. Lee, A. Chakravarti O5 Identification of extracellular matrix components inducing cancer cell migration in the supernatant of cultivated mesenchymal stem cells C. Maercker, F. Graf, M. Boutros O6 Single cell allele specific expression (ASE) IN T21 and common trisomies: a novel approach to understand DOWN syndrome and other aneuploidies G. Stamoulis, F. Santoni, P. Makrythanasis, A. Letourneau, M. Guipponi, N. Panousis, M. Garieri, P. Ribaux, E. Falconnet, C. Borel, S. E. Antonarakis O7 Role of microRNA in LCL to IPSC reprogramming S. Kumar, J. Curran, J. Blangero O8 Multiple enhancer variants disrupt gene regulatory network in Hirschsprung disease S. Chatterjee, A. Kapoor, J. Akiyama, D. Auer, C. Berrios, L. Pennacchio, A. Chakravarti O9 Metabolomic profiling for the diagnosis of neurometabolic disorders T. R. Donti, G. Cappuccio, M. Miller, P. Atwal, A. Kennedy, A. Cardon, C. Bacino, L. Emrick, J. Hertecant, F. Baumer, B. Porter, M. Bainbridge, P. Bonnen, B. Graham, R. Sutton, Q. Sun, S. Elsea O10 A novel causal methylation network approach to Alzheimer’s disease Z. Hu, P. Wang, Y. Zhu, J. Zhao, M. Xiong, David A Bennett O11 A microRNA signature identifies subtypes of triple-negative breast cancer and reveals MIR-342-3P as regulator of a lactate metabolic pathway A. Hidalgo-Miranda, S. Romero-Cordoba, S. Rodriguez-Cuevas, R. Rebollar-Vega, E. Tagliabue, M. Iorio, E. D’Ippolito, S. Baroni O12 Transcriptome analysis identifies genes, enhancer RNAs and repetitive elements that are recurrently deregulated across multiple cancer types B. Kaczkowski, Y. Tanaka, H. Kawaji, A. Sandelin, R. Andersson, M. Itoh, T. Lassmann, the FANTOM5 consortium, Y. Hayashizaki, P. Carninci, A. R. R. Forrest O13 Elevated mutation and widespread loss of constraint at regulatory and architectural binding sites across 11 tumour types C. A. Semple O14 Exome sequencing provides evidence of pathogenicity for genes implicated in colorectal cancer E. A. Rosenthal, B. Shirts, L. Amendola, C. Gallego, M. Horike-Pyne, A. Burt, P. Robertson, P. Beyers, C. Nefcy, D. Veenstra, F. Hisama, R. Bennett, M. Dorschner, D. Nickerson, J. Smith, K. Patterson, D. Crosslin, R. Nassir, N. Zubair, T. Harrison, U. Peters, G. Jarvik, NHLBI GO Exome Sequencing Project O15 The tandem duplicator phenotype as a distinct genomic configuration in cancer F. Menghi, K. Inaki, X. Woo, P. Kumar, K. Grzeda, A. Malhotra, H. Kim, D. Ucar, P. Shreckengast, K. Karuturi, J. Keck, J. Chuang, E. T. Liu O16 Modeling genetic interactions associated with molecular subtypes of breast cancer B. Ji, A. Tyler, G. Ananda, G. Carter O17 Recurrent somatic mutation in the MYC associated factor X in brain tumors H. Nikbakht, M. Montagne, M. Zeinieh, A. Harutyunyan, M. Mcconechy, N. Jabado, P. Lavigne, J. Majewski O18 Predictive biomarkers to metastatic pancreatic cancer treatment J. B. Goldstein, M. Overman, G. Varadhachary, R. Shroff, R. Wolff, M. Javle, A. Futreal, D. Fogelman O19 DDIT4 gene expression as a prognostic marker in several malignant tumors L. Bravo, W. Fajardo, H. Gomez, C. Castaneda, C. Rolfo, J. A. Pinto O20 Spatial organization of the genome and genomic alterations in human cancers K. C. Akdemir, L. Chin, A. Futreal, ICGC PCAWG Structural Alterations Group O21 Landscape of targeted therapies in solid tumors S. Patterson, C. Statz, S. Mockus O22 Genomic analysis reveals novel drivers and progression pathways in skin basal cell carcinoma S. N. Nikolaev, X. I. Bonilla, L. Parmentier, B. King, F. Bezrukov, G. Kaya, V. Zoete, V. Seplyarskiy, H. Sharpe, T. McKee, A. Letourneau, P. Ribaux, K. Popadin, N. Basset-Seguin, R. Ben Chaabene, F. Santoni, M. Andrianova, M. Guipponi, M. Garieri, C. Verdan, K. Grosdemange, O. Sumara, M. Eilers, I. Aifantis, O. Michielin, F. de Sauvage, S. Antonarakis O23 Identification of differential biomarkers of hepatocellular carcinoma and cholangiocarcinoma via transcriptome microarray meta-analysis S. Likhitrattanapisal O24 Clinical validity and actionability of multigene tests for hereditary cancers in a large multi-center study S. Lincoln, A. Kurian, A. Desmond, S. Yang, Y. Kobayashi, J. Ford, L. Ellisen O25 Correlation with tumor ploidy status is essential for correct determination of genome-wide copy number changes by SNP array T. L. Peters, K. R. Alvarez, E. F. Hollingsworth, D. H. Lopez-Terrada O26 Nanochannel based next-generation mapping for interrogation of clinically relevant structural variation A. Hastie, Z. Dzakula, A. W. Pang, E. T. Lam, T. Anantharaman, M. Saghbini, H. Cao, BioNano Genomics O27 Mutation spectrum in a pulmonary arterial hypertension (PAH) cohort and identification of associated truncating mutations in TBX4 C. Gonzaga-Jauregui, L. Ma, A. King, E. Berman Rosenzweig, U. Krishnan, J. G. Reid, J. D. Overton, F. Dewey, W. K. Chung O28 NORTH CAROLINA macular dystrophy (MCDR1): mutations found affecting PRDM13 K. Small, A. DeLuca, F. Cremers, R. A. Lewis, V. Puech, B. Bakall, R. Silva-Garcia, K. Rohrschneider, M. Leys, F. S. Shaya, E. Stone O29 PhenoDB and genematcher, solving unsolved whole exome sequencing data N. L. Sobreira, F. Schiettecatte, H. Ling, E. Pugh, D. Witmer, K. Hetrick, P. Zhang, K. Doheny, D. Valle, A. Hamosh O30 Baylor-Johns Hopkins Center for Mendelian genomics: a four year review S. N. Jhangiani, Z. Coban Akdemir, M. N. Bainbridge, W. Charng, W. Wiszniewski, T. Gambin, E. Karaca, Y. Bayram, M. K. Eldomery, J. Posey, H. Doddapaneni, J. Hu, V. R. Sutton, D. M. Muzny, E. A. Boerwinkle, D. Valle, J. R. Lupski, R. A. Gibbs O31 Using read overlap assembly to accurately identify structural genetic differences in an ashkenazi jewish trio S. Shekar, W. Salerno, A. English, A. Mangubat, J. Bruestle O32 Legal interoperability: a sine qua non for international data sharing A. Thorogood, B. M. Knoppers, Global Alliance for Genomics and Health - Regulatory and Ethics Working Group O33 High throughput screening platform of competent sineups: that can enhance translation activities of therapeutic target H. Takahashi, K. R. Nitta, A. Kozhuharova, A. M. Suzuki, H. Sharma, D. Cotella, C. Santoro, S. Zucchelli, S. Gustincich, P. Carninci O34 The undiagnosed diseases network international (UDNI): clinical and laboratory research to meet patient needs J. J. Mulvihill, G. Baynam, W. Gahl, S. C. Groft, K. Kosaki, P. Lasko, B. Melegh, D. Taruscio O36 Performance of computational algorithms in pathogenicity predictions for activating variants in oncogenes versus loss of function mutations in tumor suppressor genes R. Ghosh, S. Plon O37 Identification and electronic health record incorporation of clinically actionable pharmacogenomic variants using prospective targeted sequencing S. Scherer, X. Qin, R. Sanghvi, K. Walker, T. Chiang, D. Muzny, L. Wang, J. Black, E. Boerwinkle, R. Weinshilboum, R. Gibbs O38 Melanoma reprogramming state correlates with response to CTLA-4 blockade in metastatic melanoma T. Karpinets, T. Calderone, K. Wani, X. Yu, C. Creasy, C. Haymaker, M. Forget, V. Nanda, J. Roszik, J. Wargo, L. Haydu, X. Song, A. Lazar, J. Gershenwald, M. Davies, C. Bernatchez, J. Zhang, A. Futreal, S. Woodman O39 Data-driven refinement of complex disease classification from integration of heterogeneous functional genomics data in GeneWeaver E. J. Chesler, T. Reynolds, J. A. Bubier, C. Phillips, M. A. Langston, E. J. Baker O40 A general statistic framework for genome-based disease risk prediction M. Xiong, L. Ma, N. Lin, C. Amos O41 Integrative large-scale causal network analysis of imaging and genomic data and its application in schizophrenia studies N. Lin, P. Wang, Y. Zhu, J. Zhao, V. Calhoun, M. Xiong O42 Big data and NGS data analysis: the cloud to the rescue O. Dobretsberger, M. Egger, F. Leimgruber O43 Cpipe: a convergent clinical exome pipeline specialised for targeted sequencing S. Sadedin, A. Oshlack, Melbourne Genomics Health Alliance O44 A Bayesian classification of biomedical images using feature extraction from deep neural networks implemented on lung cancer data V. A. A. Antonio, N. Ono, Clark Kendrick C. Go O45 MAV-SEQ: an interactive platform for the Management, Analysis, and Visualization of sequence data Z. Ahmed, M. Bolisetty, S. Zeeshan, E. Anguiano, D. Ucar O47 Allele specific enhancer in EPAS1 intronic regions may contribute to high altitude adaptation of Tibetans C. Zeng, J. Shao O48 Nanochannel based next-generation mapping for structural variation detection and comparison in trios and populations H. Cao, A. Hastie, A. W. Pang, E. T. Lam, T. Liang, K. Pham, M. Saghbini, Z. Dzakula O49 Archaic introgression in indigenous populations of Malaysia revealed by whole genome sequencing Y. Chee-Wei, L. Dongsheng, W. Lai-Ping, D. Lian, R. O. Twee Hee, Y. Yunus, F. Aghakhanian, S. S. Mokhtar, C. V. Lok-Yung, J. Bhak, M. Phipps, X. Shuhua, T. Yik-Ying, V. Kumar, H. Boon-Peng O50 Breast and ovarian cancer prevention: is it time for population-based mutation screening of high risk genes? I. Campbell, M.-A. Young, P. James, Lifepool O53 Comprehensive coverage from low DNA input using novel NGS library preparation methods for WGS and WGBS C. Schumacher, S. Sandhu, T. Harkins, V. Makarov O54 Methods for large scale construction of robust PCR-free libraries for sequencing on Illumina HiSeqX platform H. DoddapaneniR. Glenn, Z. Momin, B. Dilrukshi, H. Chao, Q. Meng, B. Gudenkauf, R. Kshitij, J. Jayaseelan, C. Nessner, S. Lee, K. Blankenberg, L. Lewis, J. Hu, Y. Han, H. Dinh, S. Jireh, K. Walker, E. Boerwinkle, D. Muzny, R. Gibbs O55 Rapid capture methods for clinical sequencing J. Hu, K. Walker, C. Buhay, X. Liu, Q. Wang, R. Sanghvi, H. Doddapaneni, Y. Ding, N. Veeraraghavan, Y. Yang, E. Boerwinkle, A. L. Beaudet, C. M. Eng, D. M. Muzny, R. A. Gibbs O56 A diploid personal human genome model for better genomes from diverse sequence data K. C. C. Worley, Y. Liu, D. S. T. Hughes, S. C. Murali, R. A. Harris, A. C. English, X. Qin, O. A. Hampton, P. Larsen, C. Beck, Y. Han, M. Wang, H. Doddapaneni, C. L. Kovar, W. J. Salerno, A. Yoder, S. Richards, J. Rogers, J. R. Lupski, D. M. Muzny, R. A. Gibbs O57 Development of PacBio long range capture for detection of pathogenic structural variants Q. Meng, M. Bainbridge, M. Wang, H. Doddapaneni, Y. Han, D. Muzny, R. Gibbs O58 Rhesus macaques exhibit more non-synonymous variation but greater impact of purifying selection than humans R. A. Harris, M. Raveenedran, C. Xue, M. Dahdouli, L. Cox, G. Fan, B. Ferguson, J. Hovarth, Z. Johnson, S. Kanthaswamy, M. Kubisch, M. Platt, D. Smith, E. Vallender, R. Wiseman, X. Liu, J. Below, D. Muzny, R. Gibbs, F. Yu, J. Rogers O59 Assessing RNA structure disruption induced by single-nucleotide variation J. Lin, Y. Zhang, Z. Ouyang P1 A meta-analysis of genome-wide association studies of mitochondrial dna copy number A. Moore, Z. Wang, J. Hofmann, M. Purdue, R. Stolzenberg-Solomon, S. Weinstein, D. Albanes, C.-S. Liu, W.-L. Cheng, T.-T. Lin, Q. Lan, N. Rothman, S. Berndt P2 Missense polymorphic genetic combinations underlying down syndrome susceptibility E. S. Chen P4 The evaluation of alteration of ELAM-1 expression in the endometriosis patients H. Bahrami, A. Khoshzaban, S. Heidari Keshal P5 Obesity and the incidence of apolipoprotein E polymorphisms in an assorted population from Saudi Arabia population K. K. R. Alharbi P6 Genome-associated personalized antithrombotical therapy for patients with high risk of thrombosis and bleeding M. Zhalbinova, A. Akilzhanova, S. Rakhimova, M. Bekbosynova, S. Myrzakhmetova P7 Frequency of Xmn1 polymorphism among sickle cell carrier cases in UAE population M. Matar P8 Differentiating inflammatory bowel diseases by using genomic data: dimension of the problem and network organization N. Mili, R. Molinari, Y. Ma, S. Guerrier P9 Vulnerability of genetic variants to the risk of autism among Saudi children N. Elhawary, M. Tayeb, N. Bogari, N. Qotb P10 Chromatin profiles from ex vivo purified dopaminergic neurons establish a promising model to support studies of neurological function and dysfunction S. A. McClymont, P. W. Hook, L. A. Goff, A. McCallion P11 Utilization of a sensitized chemical mutagenesis screen to identify genetic modifiers of retinal dysplasia in homozygous Nr2e3 mice Y. Kong, J. R. Charette, W. L. Hicks, J. K. Naggert, L. Zhao, P. M. Nishina P12 Ion torrent next generation sequencing of recessive polycystic kidney disease in Saudi patients B. M. Edrees, M. Athar, F. A. Al-Allaf, M. M. Taher, W. Khan, A. Bouazzaoui, N. A. Harbi, R. Safar, H. Al-Edressi, A. Anazi, N. Altayeb, M. A. Ahmed, K. Alansary, Z. Abduljaleel P13 Digital expression profiling of Purkinje neurons and dendrites in different subcellular compartments A. Kratz, P. Beguin, S. Poulain, M. Kaneko, C. Takahiko, A. Matsunaga, S. Kato, A. M. Suzuki, N. Bertin, T. Lassmann, R. Vigot, P. Carninci, C. Plessy, T. Launey P14 The evolution of imperfection and imperfection of evolution: the functional and functionless fractions of the human genome D. Graur P16 Species-independent identification of known and novel recurrent genomic entities in multiple cancer patients J. Friis-Nielsen, J. M. Izarzugaza, S. Brunak P18 Discovery of active gene modules which are densely conserved across multiple cancer types reveal their prognostic power and mutually exclusive mutation patterns B. S. Soibam P19 Whole exome sequencing of dysplastic leukoplakia tissue indicates sequential accumulation of somatic mutations from oral precancer to cancer D. Das, N. Biswas, S. Das, S. Sarkar, A. Maitra, C. Panda, P. Majumder P21 Epigenetic mechanisms of carcinogensis by hereditary breast cancer genes J. J. Gruber, N. Jaeger, M. Snyder P22 RNA direct: a novel RNA enrichment strategy applied to transcripts associated with solid tumors K. Patel, S. Bowman, T. Davis, D. Kraushaar, A. Emerman, S. Russello, N. Henig, C. Hendrickson P23 RNA sequencing identifies gene mutations for neuroblastoma K. Zhang P24 Participation of SFRP1 in the modulation of TMPRSS2-ERG fusion gene in prostate cancer cell lines M. Rodriguez-Dorantes, C. D. Cruz-Hernandez, C. D. P. Garcia-Tobilla, S. Solorzano-Rosales P25 Targeted Methylation Sequencing of Prostate Cancer N. Jäger, J. Chen, R. Haile, M. Hitchins, J. D. Brooks, M. Snyder P26 Mutant TPMT alleles in children with acute lymphoblastic leukemia from México City and Yucatán, Mexico S. Jiménez-Morales, M. Ramírez, J. Nuñez, V. Bekker, Y. Leal, E. Jiménez, A. Medina, A. Hidalgo, J. Mejía P28 Genetic modifiers of Alström syndrome J. Naggert, G. B. Collin, K. DeMauro, R. Hanusek, P. M. Nishina P31 Association of genomic variants with the occurrence of angiotensin-converting-enzyme inhibitor (ACEI)-induced coughing among Filipinos E. M. Cutiongco De La Paz, R. Sy, J. Nevado, P. Reganit, L. Santos, J. D. Magno, F. E. Punzalan , D. Ona , E. Llanes, R. L. Santos-Cortes , R. Tiongco, J. Aherrera, L. Abrahan, P. Pagauitan-Alan; Philippine Cardiogenomics Study Group P32 The use of “humanized” mouse models to validate disease association of a de novo GARS variant and to test a novel gene therapy strategy for Charcot-Marie-Tooth disease type 2D K. H. Morelli, J. S. Domire, N. Pyne, S. Harper, R. Burgess P34 Molecular regulation of chondrogenic human induced pluripotent stem cells M. A. Gari, A. Dallol, H. Alsehli, A. Gari, M. Gari, A. Abuzenadah P35 Molecular profiling of hematologic malignancies: implementation of a variant assessment algorithm for next generation sequencing data analysis and clinical reporting M. Thomas, M. Sukhai, S. Garg, M. Misyura, T. Zhang, A. Schuh, T. Stockley, S. Kamel-Reid P36 Accessing genomic evidence for clinical variants at NCBI S. Sherry, C. Xiao, D. Slotta, K. Rodarmer, M. Feolo, M. Kimelman, G. Godynskiy, C. O’Sullivan, E. Yaschenko P37 NGS-SWIFT: a cloud-based variant analysis framework using control-accessed sequencing data from DBGAP/SRA C. Xiao, E. Yaschenko, S. Sherry P38 Computational assessment of drug induced hepatotoxicity through gene expression profiling C. Rangel-Escareño, H. Rueda-Zarate P40 Flowr: robust and efficient pipelines using a simple language-agnostic approach;ultraseq; fast modular pipeline for somatic variation calling using flowr S. Seth, S. Amin, X. Song, X. Mao, H. Sun, R. G. Verhaak, A. Futreal, J. Zhang P41 Applying “Big data” technologies to the rapid analysis of heterogenous large cohort data S. J. Whiite, T. Chiang, A. English, J. Farek, Z. Kahn, W. Salerno, N. Veeraraghavan, E. Boerwinkle, R. Gibbs P42 FANTOM5 web resource for the large-scale genome-wide transcription start site activity profiles of wide-range of mammalian cells T. Kasukawa, M. Lizio, J. Harshbarger, S. Hisashi, J. Severin, A. Imad, S. Sahin, T. C. Freeman, K. Baillie, A. Sandelin, P. Carninci, A. R. R. Forrest, H. Kawaji, The FANTOM Consortium P43 Rapid and scalable typing of structural variants for disease cohorts W. Salerno, A. English, S. N. Shekar, A. Mangubat, J. Bruestle, E. Boerwinkle, R. A. Gibbs P44 Polymorphism of glutathione S-transferases and sulphotransferases genes in an Arab population A. H. Salem, M. Ali, A. Ibrahim, M. Ibrahim P46 Genetic divergence of CYP3A5*3 pharmacogenomic marker for native and admixed Mexican populations J. C. Fernandez-Lopez, V. Bonifaz-Peña, C. Rangel-Escareño, A. Hidalgo-Miranda, A. V. Contreras P47 Whole exome sequence meta-analysis of 13 white blood cell, red blood cell, and platelet traits L. Polfus, CHARGE and NHLBI Exome Sequence Project Working Groups P48 Association of adipoq gene with type 2 diabetes and related phenotypes in african american men and women: The jackson heart study S. Davis, R. Xu, S. Gebeab, P Riestra, A Gaye, R. Khan, J. Wilson, A. Bidulescu P49 Common variants in casr gene are associated with serum calcium levels in koreans S. H. Jung, N. Vinayagamoorthy, S. H. Yim, Y. J. Chung P50 Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with multiple exponential functions Y. Zhou, S. Xu P51 A Bayesian framework for generalized linear mixed models in genome-wide association studies X. Wang, V. Philip, G. Carter P52 Targeted sequencing approach for the identification of the genetic causes of hereditary hearing impairment A. A. Abuzenadah, M. Gari, R. Turki, A. Dallol P53 Identification of enhancer sequences by ATAC-seq open chromatin profiling A. Uyar, A. Kaygun, S. Zaman, E. Marquez, J. George, D. Ucar P54 Direct enrichment for the rapid preparation of targeted NGS libraries C. L. Hendrickson, A. Emerman, D. Kraushaar, S. Bowman, N. Henig, T. Davis, S. Russello, K. Patel P56 Performance of the Agilent D5000 and High Sensitivity D5000 ScreenTape assays for the Agilent 4200 Tapestation System R. Nitsche, L. Prieto-Lafuente P57 ClinVar: a multi-source archive for variant interpretation M. Landrum, J. Lee, W. Rubinstein, D. Maglott P59 Association of functional variants and protein physical interactions of human MUTY homolog linked with familial adenomatous polyposis and colorectal cancer syndrome Z. Abduljaleel, W. Khan, F. A. Al-Allaf, M. Athar , M. M. Taher, N. Shahzad P60 Modification of the microbiom constitution in the gut using chicken IgY antibodies resulted in a reduction of acute graft-versus-host disease after experimental bone marrow transplantation A. Bouazzaoui, E. Huber, A. Dan, F. A. Al-Allaf, W. Herr, G. Sprotte, J. Köstler, A. Hiergeist, A. Gessner, R. Andreesen, E. Holler P61 Compound heterozygous mutation in the gene in Saudi patients suffering severe hypercholesterolemia F. Al-Allaf, A. Alashwal, Z. Abduljaleel, M. Taher, A. Bouazzaoui, H. Abalkhail, A. Al-Allaf, R. Bamardadh, M. Athar
PubMed: 27294413
DOI: 10.1186/s40246-016-0063-5 -
Journal of Human Genetics Jan 2015Alström syndrome (ALMS) is an autosomal recessive disease characterized by multiple organ involvement, including neurosensory vision and hearing loss, childhood... (Review)
Review
Alström syndrome (ALMS) is an autosomal recessive disease characterized by multiple organ involvement, including neurosensory vision and hearing loss, childhood obesity, diabetes mellitus, cardiomyopathy, hypogonadism, and pulmonary, hepatic, renal failure and systemic fibrosis. Alström Syndrome is caused by mutations in ALMS1, and ALMS1 protein is thought to have a role in microtubule organization, intraflagellar transport, endosome recycling and cell cycle regulation. Here, we report extensive phenotypic and genetic analysis of a large cohort of Turkish patients with ALMS. We evaluated 61 Turkish patients, including 11 previously reported, for both clinical spectrum and mutations in ALMS1. To reveal the molecular diagnosis of the patients, different approaches were used in combination, a cohort of patients were screened by the gene array to detect the common mutations in ALMS1 gene, then in patients having any of the common ALMS1 mutations were subjected to direct DNA sequencing or next-generation sequencing for the screening of mutations in all coding regions of the gene. In total, 20 distinct disease-causing nucleotide changes in ALMS1 have been identified, eight of which are novel, thereby increasing the reported ALMS1 mutations by 6% (8/120). Five disease-causing variants were identified in more than one kindred, but most of the alleles were unique to each single patient and identified only once (16/20). So far, 16 mutations identified were specific to the Turkish population, and four have also been reported in other ethnicities. In addition, 49 variants of uncertain pathogenicity were noted, and four of these were very rare and probably or likely deleterious according to in silico mutation prediction analyses. ALMS has a relatively high incidence in Turkey and the present study shows that the ALMS1 mutations are largely heterogeneous; thus, these data from a particular population may provide a unique source for the identification of additional mutations underlying Alström Syndrome and contribute to genotype-phenotype correlation studies.
Topics: Adolescent; Alstrom Syndrome; Cell Cycle Proteins; Cohort Studies; Consanguinity; DNA Mutational Analysis; Female; Genetic Association Studies; Humans; Male; Mutation; Pedigree; Protein Isoforms; Proteins; Turkey
PubMed: 25296579
DOI: 10.1038/jhg.2014.85