-
Drug Resistance Updates : Reviews and... Sep 2016The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus... (Review)
Review
The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.
Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; Burkholderia; Burkholderia Infections; Burkholderia mallei; Burkholderia pseudomallei; DNA Gyrase; Drug Resistance, Multiple, Bacterial; Gene Expression Regulation, Bacterial; Genes, MDR; Glanders; Horses; Humans; Melioidosis; Porins; Tetrahydrofolate Dehydrogenase
PubMed: 27620956
DOI: 10.1016/j.drup.2016.07.003 -
Seminars in Respiratory and Critical... Dec 2019Although survival of individuals with cystic fibrosis (CF) has been continuously improving for the past 40 years, respiratory failure secondary to recurrent pulmonary... (Review)
Review
Although survival of individuals with cystic fibrosis (CF) has been continuously improving for the past 40 years, respiratory failure secondary to recurrent pulmonary infections remains the leading cause of mortality in this patient population. Certain pathogens such as , methicillin-resistant , and species of the complex continue to be associated with poorer clinical outcomes including accelerated lung function decline and increased mortality. In addition, other organisms such as anaerobes, viruses, and fungi are increasingly recognized as potential contributors to disease progression. Culture-independent molecular methods are also being used for diagnostic purposes and to examine the interaction of microorganisms in the CF airway. Given the importance of CF airway infections, ongoing initiatives to promote understanding of the epidemiology, clinical course, and treatment options for these infections are needed.
Topics: Bacterial Infections; Burkholderiaceae; Cystic Fibrosis; Humans; Methicillin-Resistant Staphylococcus aureus; Microbiota; Mycoses; Pseudomonas aeruginosa; Respiratory Tract Infections; Virus Diseases
PubMed: 31887768
DOI: 10.1055/s-0039-1698464 -
Trends in Microbiology Jan 2024is a Gram negative, facultative intracellular bacterium that resides in the rhizosphere of tropical soils. causes melioidosis, which is transmitted by cutaneous entry,...
is a Gram negative, facultative intracellular bacterium that resides in the rhizosphere of tropical soils. causes melioidosis, which is transmitted by cutaneous entry, ingestion, or inhalation of contaminated soil or water. Infection with can cause a wide array of clinical symptoms such as pneumonia, bone, joint, skin, genitourinary, and central nervous system infections, as well as parotid abscesses in children. Mammalian virulence is linked to the intracellular life cycle, which begins with attachment and internalization by host cells. can infect a wide range of eukaryotic cells, including macrophages, monocytes, and neutrophils, as well as nonphagocytic cells. Once internalized, a type 3 secretion system (T3SS) facilitates escape from the phagosome, and the bacteria replicate in the cytoplasm. Autotransporter protein BimA mediates actin polymerization, enabling to spread, cell to cell, using actin-based motility. This process, coupled with the activity of a type 6 secretion system (T6SS-5), results in host membrane fusion and the formation of multinucleated giant cells. Capsule polysaccharides also contribute to virulence and evasion of host innate immunity. Treatment of infections is complicated by the organism’s intrinsic resistance to multiple classes of antimicrobials, largely due to an abundance of efflux pumps and reduced outer membrane permeability. While is commonly associated with endemic ‘hotspots’ in southeast Asia and northern Australia, there is increasing evidence that it is likely endemic in a large range of tropical and subtropical areas, including regions in Africa, South America, the Middle East, Central America, and the Caribbean. Soil and climate conditions favorable for survival are also found in additional areas worldwide. Consequently, it is important for clinical and public health laboratories located outside of high-endemicity areas to be aware of , as well as for improved diagnostic and reporting methods.
Topics: Burkholderia pseudomallei; Burkholderia
PubMed: 37634974
DOI: 10.1016/j.tim.2023.07.008 -
Molecular Plant Pathology Sep 2013Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease... (Review)
Review
UNLABELLED
Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems.
TAXONOMY
Bacteria; Proteobacteria; β subdivision; Ralstonia group; genus Ralstonia.
DISEASE SYMPTOMS
Ralstonia solanacearum is the agent of bacterial wilt of plants, characterized by a sudden wilt of the whole plant. Typically, stem cross-sections will ooze a slimy bacterial exudate. In the case of Moko disease of banana and brown rot of potato, there is also visible bacterial colonization of banana fruit and potato tuber.
DISEASE CONTROL
As a soil-borne pathogen, infected fields can rarely be reused, even after rotation with nonhost plants. The disease is controlled by the use of resistant and tolerant plant cultivars. The prevention of spread of the disease has been achieved, in some instances, by the application of strict prophylactic sanitation practices.
USEFUL WEBSITES
Stock centre: International Centre for Microbial Resources-French Collection for Plant-associated Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex, France, http://www.angers-nantes.inra.fr/cfbp/. Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum. GMI1000 insertion mutant library: https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources. MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?
Topics: Genomics; Host Specificity; Phylogeny; Plant Diseases; Plants; Ralstonia solanacearum
PubMed: 23718203
DOI: 10.1111/mpp.12038 -
The ISME Journal Sep 2018Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of...
Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.
Topics: Antibiosis; Burkholderiaceae; Carbon-Sulfur Lyases; Ecosystem; Fungi; Iron-Sulfur Proteins; Microbial Consortia; Oxidoreductases; Phylogeny; Plant Diseases; Soil; Soil Microbiology; Sulfur
PubMed: 29899517
DOI: 10.1038/s41396-018-0186-x -
Microbiology (Reading, England) Jan 2014Lead (Pb) is an element present in the environment that negatively affects all living organisms. To diminish its high toxicity, micro-organisms have developed several... (Review)
Review
Lead (Pb) is an element present in the environment that negatively affects all living organisms. To diminish its high toxicity, micro-organisms have developed several mechanisms that allow them to survive exposure to Pb(II). The main mechanisms of lead resistance involve adsorption by extracellular polysaccharides, cell exclusion, sequestration as insoluble phosphates, and ion efflux to the cell exterior. This review describes the various lead resistance mechanisms, and the regulation of their expression by lead binding regulatory proteins. Special attention is given to the Pbr system from Cupriavidus metallidurans CH34, which involves a unique mechanism combining efflux and lead precipitation.
Topics: Cupriavidus; Drug Resistance, Bacterial; Lead; Metabolic Networks and Pathways
PubMed: 24124204
DOI: 10.1099/mic.0.070284-0 -
PloS One 2022The genus Ardisia (Myrsinoideae, Primulaceae) has 16 subgenera and over 700 accepted names, mainly distributed in tropical Asia and America. The circumscription of...
The genus Ardisia (Myrsinoideae, Primulaceae) has 16 subgenera and over 700 accepted names, mainly distributed in tropical Asia and America. The circumscription of Ardisia is not well-defined and sometimes confounded with the separation of some small genera. A taxonomic revision focusing on Ardisia and allies is necessary. In the Ardisia subgenus Crispardisia, symbiotic association with leaf-nodule bacteria is a unique character within the genus. The endosymbionts are vertically transmitted, highly specific and highly dependent on the hosts, suggesting strict cospeciation may have occurred in the evolutionary history. In the present study, we aimed to establish a phylogenetic framework for further taxonomic revision. We also aimed to test the cospeciation hypothesis of the leaf-nodulate Ardisia and their endosymbiotic bacteria. Nuclear ITS and two chloroplast intergenic spaces were used to reconstruct the phylogeny of Asian Ardisia and relatives in Myrsinoideae, Primulaceae. The 16S-23S rRNA were used to reconstruct the bacterial symbionts' phylogeny. To understand the evolutionary association of the Ardisia and symbionts, topology tests and cophylogenetic analyses were conducted. The molecular phylogeny suggested Ardisia is not monophyletic, unless Sardiria, Hymenandra, Badula and Oncostemum are included. The results suggest the generic limit within Myrsinoideae (Primulaceae) needs to be further revised. The subgenera Crispardisia, Pimelandra, and Stylardisia were supported as monophyly, while the subgenus Bladhia was separated into two distant clades. We proposed to divide the subgenus Bladhia into subgenus Bladhia s.str. and subgenus Odontophylla. Both of the cophylogenetic analyses and topology tests rejected strict cospeciation hypothesis between Ardisia hosts and symbiotic Burkholderia. Cophylogenetic analyses showed general phylogenetic concordance of Ardisia and Burkholderia, and cospeciation events, host-switching events and loss events were all inferred.
Topics: Phylogeny; Symbiosis; Plant Leaves; Burkholderia; Ardisia; RNA, Ribosomal, 16S
PubMed: 35045070
DOI: 10.1371/journal.pone.0261188 -
Applied and Environmental Microbiology May 2022Microbial symbionts are critical for the development and survival of many eukaryotes. Recent research suggests that the genes enabling these relationships can be...
Microbial symbionts are critical for the development and survival of many eukaryotes. Recent research suggests that the genes enabling these relationships can be localized in horizontally transferred regions of microbial genomes termed "symbiotic islands." Recently, a putative symbiotic island was found that may facilitate symbioses between true bugs and numerous species, based on analysis of five symbionts. We expanded on this work by exploring the putative island's prevalence, origin, and association with colonization across the bacterial family . We performed a broad comparative analysis of 229 genomes, including 8 new genomes of insect- or soil-associated sequenced for this study. We detected the region in 23% of the genomes; these were located solely within two clades. Our analyses suggested that the contiguous region arose at the common ancestor of plant- and insect-associated clades, but the genes themselves are ancestral. Although the region was initially discovered on plasmids and we did detect two likely instances of horizontal transfer within , we found that the region is almost always localized to a chromosome and does not possess any of the mobility elements that typify genomic islands. Finally, to attempt to deduce the region's function, we combined our data with information on several strains' abilities to colonize the insect's symbiotic organ. Although the region was associated with improved colonization of the host, this relationship was confounded with, and likely driven by, clade membership. These findings advance our understanding of the genomic underpinnings of a widespread insect-microbe symbiosis. Many plants and animals form intricate associations with bacteria. These pairings can be mediated by genomic islands, contiguous regions containing numerous genes with cohesive functionality. Pathogen-associated islands are well described, but recent evidence suggests that mutualistic islands, which benefit both host and symbiont, may also be common. Recently, a putative symbiosis island was found in symbionts of insects. We determined that this genomic region is located in only two clades of (the plant- and insect-associated species) and that although it has undergone horizontal transfer, it is most likely a symbiosis-associated region rather than a true island. This region is associated with improved host colonization, although this is may be due to specific clades' abilities to colonize rather than presence of the region. By studying the genomic basis of the insect- symbiosis, we can better understand how mutualisms evolve in animals.
Topics: Animals; Burkholderia; Burkholderiaceae; Genomics; Heteroptera; Insecta; Prevalence; Symbiosis
PubMed: 35435710
DOI: 10.1128/aem.02502-21 -
Applied and Environmental Microbiology Mar 2021Mucoromycota representatives are known to harbor two types of endohyphal bacteria (EHB)--related endobacteria (BRE) and -related endobacteria (MRE). While both BRE and...
Mucoromycota representatives are known to harbor two types of endohyphal bacteria (EHB)--related endobacteria (BRE) and -related endobacteria (MRE). While both BRE and MRE occur in fungi representing all subphyla of Mucoromycota, their distribution is not well studied. Therefore, it is difficult to resolve the evolutionary history of these associations in favor of one of the following two alternative hypotheses explaining their origin: "early invasion" and "late invasion." Our main goal was to fill this knowledge gap by surveying Mucoromycota fungi for the presence of EHB. We screened 196 fungal strains from 16 genera using a PCR-based approach to detect bacterial 16S rRNA genes, complemented with fluorescence hybridization (FISH) imaging to confirm the presence of bacteria within the hyphae. We detected in ca. 20% of fungal strains. Some of these bacteria clustered phylogenetically with previously described BRE clades, whereas others grouped with free-living Importantly, the latter were detected in Umbelopsidales, which previously were not known to harbor endobacteria. Our results suggest that this group of EHB is recruited from the environment, supporting the late invasion scenario. This pattern complements the early invasion scenario apparent in the BRE clade of EHB. Bacteria living within fungal hyphae present an example of one of the most intimate relationships between fungi and bacteria. Even though there are several well-described examples of such partnerships, their prevalence within the fungal kingdom remains unknown. Our study focused on early divergent terrestrial fungi in the phylum Mucoromycota. We found that ca. 20% of the strains tested harbored bacteria from the family Not only did we confirm the presence of bacteria from previously described endosymbiont clades, we also identified a new group of endohyphal representing the genus We established that more than half of the screened strains were positive for bacteria from this new group. We also determined that, while previously described BRE codiverged with their fungal hosts, symbionts did not.
Topics: Burkholderiaceae; Fungi; Hyphae; In Situ Hybridization, Fluorescence; Polymerase Chain Reaction; RNA, Bacterial; RNA, Ribosomal, 16S
PubMed: 33483310
DOI: 10.1128/AEM.02707-20 -
Viruses Jul 2021The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all... (Review)
Review
The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.
Topics: Bacteriophages; Burkholderia cepacia complex; Humans; Phage Therapy
PubMed: 34372537
DOI: 10.3390/v13071331