-
Journal of Nematology Mar 2016A factorial experiment was established in a completely randomized design to verify the effect of different inoculum levels of an Iranian isolate of Trichoderma...
A factorial experiment was established in a completely randomized design to verify the effect of different inoculum levels of an Iranian isolate of Trichoderma longibrachiatum separately and in combination with various concentrations of cadusafos against Meloidogyne javanica in the greenhouse. Zucchini seeds were soaked for 12 hr in five densities (0, 10(5), 10(6), 10(7), and 10(8) spores/ml suspension) of the fungus prior to planting in pots containing four concentrations of cadusafos (0, 0.5, 1, and 2 mg a.i./kg soil). The data were analyzed using a custom response surface regression model and the response surface curve and contour plots were drawn. Reliability of the model was examined by comparing the result of new experimental treatments with the predicted results. The optimal levels of these two variables also were calculated. The interactive effects of concentrations of Trichoderma and cadusafos were insignificant for several responses such as the total number of eggs per gram soil, the number of intact eggs per gram soil, nematode reproduction factor, and control percent. Closeness of experimental mean values with the expected values proved the validity of the model. The optimal levels of the cadusafos concentration and Trichoderma concentration that caused the best plant growth and lowest nematode reproduction were 1.7 mg a.i./kg soil and 10(8) conidia/ml suspension, respectively.
PubMed: 27168653
DOI: 10.21307/jofnem-2017-009 -
Journal of Occupational Health Jan 2021The comprehensive detection of environmental chemicals in biospecimens, an indispensable task in exposome research, is advancing. This study aimed to develop an...
Development of a strategic approach for comprehensive detection of organophosphate pesticide metabolites in urine: Extrapolation of cadusafos and prothiofos metabolomics data of mice to humans.
OBJECTIVES
The comprehensive detection of environmental chemicals in biospecimens, an indispensable task in exposome research, is advancing. This study aimed to develop an exposomic approach to identify urinary metabolites of organophosphate (OP) pesticides, specifically cadusafos and prothiofos metabolites, as an example chemical group, using an original metabolome dataset generated from animal experiments.
METHODS
Urine samples from 73 university students were analyzed using liquid chromatography-high-resolution mass spectrometry. The metabolome data, including the exact masses, retention time (t ), and tandem mass spectra obtained from the human samples, were compared with the existing reference databases and with our original metabolome dataset for cadusafos and prothiofos, which was produced from mice to whom two doses of these OPs were orally administered.
RESULTS
Using the existing databases, one chromatographic peak was annotated as 2,4-dichlorophenol, which could be a prothiofos metabolite. Using our original dataset, one peak was annotated as a putative cadusafos metabolite and three peaks as putative prothiofos metabolites. Of these, all three peaks suggestive of prothiofos metabolites, 2,4-dichlorophenol, 3,4,5-trihydroxy-6-(2,4-dichlorophenoxy) oxane-2-carboxylic acid, and (2,4-dichlorophenyl) hydrogen sulfate were confirmed as authentic compounds by comparing their peak data with both the original dataset and peak data of the standard reagents. The putative cadusafos metabolite was identified as a level C compound (metabolite candidate with limited plausibility).
CONCLUSIONS
Our developed method successfully identified prothiofos metabolites that are usually not a target of biomonitoring studies. Our approach is extensively applicable to various environmental contaminants beyond OP pesticides.
Topics: Animals; Chromatography, Liquid; Databases, Factual; Environmental Monitoring; Humans; Metabolome; Metabolomics; Mice; Occupational Exposure; Organothiophosphates; Organothiophosphorus Compounds; Pesticides; Reference Values; Tandem Mass Spectrometry
PubMed: 33779022
DOI: 10.1002/1348-9585.12218 -
FEMS Microbiology Ecology Aug 2005An enrichment culture technique was used for the isolation of microorganisms responsible for the enhanced biodegradation of the nematicide cadusafos in soils from a...
An enrichment culture technique was used for the isolation of microorganisms responsible for the enhanced biodegradation of the nematicide cadusafos in soils from a potato monoculture area in Northern Greece. Mineral salts medium supplemented with nitrogen (MSMN), where cadusafos (10 mg l(-1)) was the sole carbon source, and soil extract medium (SEM) were used for the isolation of cadusafos-degrading bacteria. Two pure bacterial cultures, named CadI and CadII, were isolated and subsequently characterized by sequencing of 16S rRNA genes. Isolate CadI showed 97.4% similarity to the 16S rRNA gene of a Flavobacterium strain, unlike CadII which showed 99.7% similarity to the 16S rRNA gene of a Sphingomonas paucimobilis. Both isolates rapidly metabolized cadusafos in MSMN and SEM within 48 h with concurrent population growth. This is the first report for the isolation and characterization of soil bacteria with the ability to degrade rapidly cadusafos and use it as a carbon source. Degradation of cadusafos by both isolates was accelerated when MSMN was supplemented with glucose. In contrast, addition of succinate in MSMN marginally reduced the degradation of cadusafos. Both isolates were also able to degrade completely ethoprophos, a nematicide chemical analog of cadusafos, but did not degrade the other organophosphorus nematicides tested such as isazofos and isofenphos. Inoculation of a soil freshly treated with cadusafos or ethoprophos (10 mg l(-1)) with high inoculum densities (4.3 x 10(8) cells g(-1)) of Sphingomonas paucimobilis resulted in the rapid degradation of both nematicides. These results indicate the potential of this bacterium to be used in the clean-up of contaminated pesticide waste in the environment.
Topics: Antinematodal Agents; Biodegradation, Environmental; DNA, Bacterial; Flavobacterium; Organothiophosphorus Compounds; Pesticides; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Sphingomonas
PubMed: 16329956
DOI: 10.1016/j.femsec.2005.01.012 -
Journal of Nematology Jun 1999The effect of the nematicide cadusafos on the hatching of the potato cyst nematode Globodera pallida in potato root diffusate, soil leachate, and distilled water was...
The effect of the nematicide cadusafos on the hatching of the potato cyst nematode Globodera pallida in potato root diffusate, soil leachate, and distilled water was investigated. Cadusafos had a significant effect on the hatching, migration, movement, and root invasion by the second-stage juveniles. Hatching was completely inhibited at low concentrations of cadusafos (0.002-0.004 microg/ml), but hatching resumed a week after removing the nematicide. At concentrations of 0.05 microg/ml and higher of analytical-grade cadusafos, the inhibition of hatching was permanent.
PubMed: 19270890
DOI: No ID Found -
Stress Biology Feb 2024Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in...
Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.
PubMed: 38319394
DOI: 10.1007/s44154-023-00138-6 -
Brazilian Journal of Biology = Revista... Sep 2020Root-knot nematodes (RKNs) (Meloidogyne spp.) are well known disease problem causing major losses in vegetable crops. Although, chemical nematicides have been used as...
Root-knot nematodes (RKNs) (Meloidogyne spp.) are well known disease problem causing major losses in vegetable crops. Although, chemical nematicides have been used as one of the primary means for controlling RKNs, reliance on these nematicides is associated with heavy costs and negative effects on human health and environment. In this research, the suppressing potential of 6 Iranian commercial fertilizers on RKNs was investigated in laboratory and greenhouse conditions as an alternative to reduce the use of chemical nematicides. For this purpose, M. javanica inoculum was thoroughly mixed with autoclaved sandy loam soil. Then, 6 fertilizers (biofertilizer, phosphate chemical fertilizer (phosphate), potassium chemical fertilizer (potassium), peat moss, vermicompost, and leaf mold) were added individually to the inoculated soil, according to the defined treatments. The nematicide Cadusafos was used as a positive control. A negative control was also included in the experiment (including no fertilizer and no nematicide). Four-leaf seedlings of the tomato (Super Chief cv.) were transferred to the pots filled using 2 kg of the treated soil. After 60 days, reproduction factor (RF), egg mass, and root galling of the nematode were recorded. The results showed that, fertilizer-treated soils had significantly (P≤0.05) lower root galling, egg mass, and RF compared to the negative control. After the nematicide treatment, the highest suppression capability on the RKN was obtained in treatments of phosphate, biofertilizer, potassium, vermicompost, peat moss, and leaf mold, respectively. It can be concluded that, replacing chemical nematicides with fertilizers may be considered as a successful nematode management in tomato fields.
Topics: Animals; Antinematodal Agents; Iran; Solanum lycopersicum; Soil; Tylenchoidea
PubMed: 31644656
DOI: 10.1590/1519-6984.218195 -
Saudi Journal of Biological Sciences Jan 2021Root-knot nematodes (Kofoid and White) Chitwood and (Taub.) Butler, fungus, are very dangerous root damaging pathogens. Present study was planned to establish a...
Root-knot nematodes (Kofoid and White) Chitwood and (Taub.) Butler, fungus, are very dangerous root damaging pathogens. Present study was planned to establish a chemical control of these root deteriorating pathogens under lab conditions as well as in field. Maximum death rate of nematode juveniles and minimum numbers of nematode eggs hatched were recorded in plates treated with Cadusafos (Rugby® 100G) @12 g/100 ml and Cartap® (4% G) @9g/100 ml. Chemical treatment of with Trifloxystrobin + Tebuconazole (Nativo®) @0.2 g/100 ml and Mancozeb + Matalaxyl (Axiom) @0.25 g/100 ml significantly controlled the mycelial growth in plates. The best treatments tested in laboratory were applied in field as protective and curative treatments. Results proved that chemical control of root-knot nematode and root rot fungi by tested chemicals at recommended time and dose is a significant management technique under field conditions.
PubMed: 33424277
DOI: 10.1016/j.sjbs.2020.08.023 -
Environmental Science and Pollution... Oct 2023Pesticides applied to agricultural land have been shown to decrease the quality of water entering the Great Barrier Reef lagoon. This issue is addressed by the Reef 2050...
Pesticides applied to agricultural land have been shown to decrease the quality of water entering the Great Barrier Reef lagoon. This issue is addressed by the Reef 2050 Water Quality Improvement Plan which includes a pesticide reduction target. As part of a wider educational strategy, one method that could help meet the target is to provide stakeholders with information that assists in the selection and use of pesticide active ingredients (PAIs) that pose a lower risk to aquatic environments compared to those currently used. This study developed a Pesticide Decision Support Tool (PDST) in collaboration with stakeholders for the sugar cane industry. The PDST covers all PAIs registered and applied to sugar cane in Australia and four additional PAIs registered for use on crops grown in rotation with sugar cane. The PDST incorporates both the measure of mobility and persistence of a PAI and the measure of effect, which is based on the PAI application rate and ecotoxicity threshold value. The aquatic risk, which is the product of the measure of effect and the measure of mobility and persistence, is a measure of the likelihood that a PAI will reach the aquatic environment and cause harmful effects. Insecticide active ingredients (e.g., cadusafos, chlorpyrifos) posed the greatest aquatic risk, followed by herbicide active ingredients (e.g., MSMA, metolachlor), while fungicide AIs typically had a lower aquatic risk. An interactive spreadsheet allows characteristics, including application rate and tank mixes, to be considered when assessing the potential risk. While focusing on sugar cane, the results are equally appropriate to other crops that use the same PAIs provided the application rates are corrected to the new crop. In addition, the approach used in the PDST can be applied internationally and to any PAIs with sufficient toxicity, mobility, and persistence data.
Topics: Pesticides; Saccharum; Water Pollutants, Chemical; Agriculture; Herbicides; Edible Grain; Crops, Agricultural
PubMed: 37747608
DOI: 10.1007/s11356-023-29814-w -
Preventive Nutrition and Food Science Jun 2013We tested for residual pesticide levels in dried vegetables in Seoul, Korea. A total of 100 samples of 13 different types of agricultural products were analyzed by a gas...
We tested for residual pesticide levels in dried vegetables in Seoul, Korea. A total of 100 samples of 13 different types of agricultural products were analyzed by a gas chromatography-nitrogen phosphate detector (GC-NPD), an electron capture detector (GC-μECD), a mass spectrometry detector (GC-MSD), and a high performance liquid chromatography-ultraviolet detector (HPLC-UV). We used multi-analysis methods to analyze for 253 different pesticide types. Among the selected agricultural products, residual pesticides were detected in 11 samples, of which 2 samples (2.0%) exceeded the Korea Maximum Residue limits (MRLs). We detected pesticide residue in 6 of 9 analyzed dried pepper leaves and 1 sample exceeded the Korea MRLs. Data obtained were then used for estimating the potential health risks associated with the exposures to these pesticides. The estimated daily intakes (EDIs) range from 0.1% of the acceptable daily intake (ADI) for bifenthrin to 8.4% of the ADI for cadusafos. The most critical commodity is cadusafos in chwinamul, contributing 8.4% to the hazard index (HI). This results show that the detected pesticides could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring is recommended.
PubMed: 24471124
DOI: 10.3746/pnf.2013.18.2.145 -
Microbes and Environments 2008The toxicity of three organophosphorous nematicides, imicyafos, fosthiazate and cadusafos, to non-target organisms in soil was evaluated. Imicyafos and fosthiazate had...
The toxicity of three organophosphorous nematicides, imicyafos, fosthiazate and cadusafos, to non-target organisms in soil was evaluated. Imicyafos and fosthiazate had no significant inhibitory effect on the growth of fungal (Fusarium oxysporum f. sp. lactucae, Rhizoctonia solani and Trichoderma viride) and bacterial (Ralstonia solanacearum and Pseudomonas fluorescens) strains in media at 12.5 to 200 mg L(-1). Cadusafos, however, significantly inhibited the growth of all these strains except R. solanacearum. A pot test was conducted using a soil naturally infested with Pratylenchus penetrans, and treated with imicyafos or fosthiazate, which are less toxic to non-target organisms. The density of P. penetrans decreased to less than 10% of the control level after exposure to imicyafos and fosthiazate at 3 kg active ingredient ha(-1), the conventional dose. No significant effect was observed on the density of free-living nematodes, cellulose decomposition activity, microbial biomass evaluated with the ATP method and number of ammonia oxidizers between the soil treated with imicyafos or fosthiazate and the untreated control soil. Our results revealed that imicyafos and fosthiazate effectively suppressed a plant-parasitic nematode, P. penetrans, but had little impact on free-living nematodes and the soil microbial community.
PubMed: 21558727
DOI: 10.1264/jsme2.me08534