-
International Journal of Molecular... Dec 2021Neurons rely mostly on mitochondria for the production of ATP and Ca homeostasis. As sub-compartmentalized cells, they have different pools of mitochondria in each... (Review)
Review
Neurons rely mostly on mitochondria for the production of ATP and Ca homeostasis. As sub-compartmentalized cells, they have different pools of mitochondria in each compartment that are maintained by a constant mitochondrial turnover. It is assumed that most mitochondria are generated in the cell body and then travel to the synapse to exert their functions. Once damaged, mitochondria have to travel back to the cell body for degradation. However, in long cells, like motor neurons, this constant travel back and forth is not an energetically favourable process, thus mitochondrial biogenesis must also occur at the periphery. Ca and ATP levels are the main triggers for mitochondrial biogenesis in the cell body, in a mechanism dependent on the Peroxisome-proliferator-activated γ co-activator-1α-nuclear respiration factors 1 and 2-mitochondrial transcription factor A (PGC-1α-NRF-1/2-TFAM) pathway. However, even though of extreme importance, very little is known about the mechanisms promoting mitochondrial biogenesis away from the cell body. In this review, we bring forward the evoked mechanisms that are at play for mitochondrial biogenesis in the cell body and periphery. Moreover, we postulate that mitochondrial biogenesis may vary locally within the same neuron, and we build upon the hypotheses that, in the periphery, local protein synthesis is responsible for giving all the machinery required for mitochondria to replicate themselves.
Topics: Animals; Humans; Mitochondria; Mitochondrial Proteins; Neurons; Organelle Biogenesis; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
PubMed: 34884861
DOI: 10.3390/ijms222313059 -
Proceedings of the National Academy of... Oct 2021To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical...
To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength.
Topics: Animals; Axons; Cell Body; Dendrites; Neurons; Protein Biosynthesis; Proteome; RNA, Messenger; Sequence Analysis, RNA; Transcriptome
PubMed: 34670838
DOI: 10.1073/pnas.2113929118 -
ELife Jun 2022Pyramidal neurons with axons that exit from dendrites rather than the cell body itself are relatively common in non-primates, but rare in monkeys and humans.
Pyramidal neurons with axons that exit from dendrites rather than the cell body itself are relatively common in non-primates, but rare in monkeys and humans.
Topics: Axons; Cell Body; Neurons; Pyramidal Cells
PubMed: 35647816
DOI: 10.7554/eLife.79839 -
Cell Jan 2021Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called...
Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called NeuroPAL (a neuronal polychromatic atlas of landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that resolves all neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. We showcase three applications that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding for these stimuli.
Topics: Algorithms; Anatomic Landmarks; Animals; Atlases as Topic; Brain; Brain Mapping; Caenorhabditis elegans; Cell Body; Cell Lineage; Drosophila; Mutation; Nerve Net; Neurons; Phenotype; Receptors, Metabotropic Glutamate; Receptors, Neurotransmitter; Smell; Software; Taste; Transcription Factors; Transgenes
PubMed: 33378642
DOI: 10.1016/j.cell.2020.12.012 -
Biomolecules Jul 2019The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical... (Review)
Review
The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Topics: Bacteria; Bacterial Proteins; Flagella
PubMed: 31337100
DOI: 10.3390/biom9070279 -
Frontiers in Microbiology 2021are helical bacteria that lack a peptidoglycan layer. They are widespread globally as parasites of arthropods and plants. Their infectious processes and survival are... (Review)
Review
are helical bacteria that lack a peptidoglycan layer. They are widespread globally as parasites of arthropods and plants. Their infectious processes and survival are most likely supported by their unique swimming system, which is unrelated to well-known bacterial motility systems such as flagella and pili. swims by switching the left- and right-handed helical cell body alternately from the cell front. The kinks generated by the helicity shift travel down along the cell axis and rotate the cell body posterior to the kink position like a screw, pushing the water backward and propelling the cell body forward. An internal structure called the "ribbon" has been focused to elucidate the mechanisms for the cell helicity formation and swimming. The ribbon is composed of -specific fibril protein and a bacterial actin, MreB. Here, we propose a model for helicity-switching swimming focusing on the ribbon, in which MreBs generate a force like a bimetallic strip based on ATP energy and switch the handedness of helical fibril filaments. Cooperative changes of these filaments cause helicity to shift down the cell axis. Interestingly, unlike other motility systems, the fibril protein and MreBs can be traced back to their ancestors. The fibril protein has evolved from methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase, which is essential for growth, and MreBs, which function as a scaffold for peptidoglycan synthesis in walled bacteria.
PubMed: 34512583
DOI: 10.3389/fmicb.2021.706426 -
Current Opinion in Neurobiology Jun 2008Although neurons within the peripheral nervous system (PNS) have a remarkable ability to repair themselves after injury, neurons within the central nervous system (CNS)... (Review)
Review
Although neurons within the peripheral nervous system (PNS) have a remarkable ability to repair themselves after injury, neurons within the central nervous system (CNS) do not spontaneously regenerate. This problem has remained recalcitrant despite a century of research on the reaction of axons to injury. The balance between inhibitory cues present in the environment and the intrinsic growth capacity of the injured neuron determines the extent of axonal regeneration following injury. The cell body of an injured neuron must receive accurate and timely information about the site and extent of axonal damage in order to increase its intrinsic growth capacity and successfully regenerate. One of the mechanisms contributing to this process is retrograde transport of injury signals. For example, molecules activated at the injury site convey information to the cell body leading to the expression of regeneration-associated genes and increased growth capacity of the neuron. Here we discuss recent studies that have begun to dissect the injury-signaling pathways involved in stimulating the intrinsic growth capacity of injured neurons.
Topics: Animals; Humans; Nerve Regeneration; Peripheral Nervous System Diseases; Signal Transduction
PubMed: 18655834
DOI: 10.1016/j.conb.2008.06.005