-
Biochimica Et Biophysica Acta.... Apr 2020Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome... (Review)
Review
Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.
Topics: Bacterial Proteins; Energy Transfer; Light-Harvesting Protein Complexes; Models, Molecular; Photochemical Processes; Phycobilisomes
PubMed: 31306623
DOI: 10.1016/j.bbabio.2019.07.002 -
Biomolecules Nov 2019The phycobilisome (PBS) is the major light-harvesting complex of photosynthesis in cyanobacteria, red algae, and glaucophyte algae. In spite of the fact that it is very... (Review)
Review
The phycobilisome (PBS) is the major light-harvesting complex of photosynthesis in cyanobacteria, red algae, and glaucophyte algae. In spite of the fact that it is very well structured to absorb light and transfer it efficiently to photosynthetic reaction centers, it has been completely lost in the green algae and plants. It is difficult to see how selection alone could account for such a major loss. An alternative scenario takes into account the role of chance, enabled by (contingent on) the evolution of an alternative antenna system early in the diversification of the three lineages from the first photosynthetic eukaryote.
Topics: Bacterial Proteins; Chlorophyta; Cyanobacteria; Evolution, Molecular; Photosynthesis; Phycobilisomes; Plant Proteins; Rhodophyta
PubMed: 31752285
DOI: 10.3390/biom9110748 -
The Plant Journal : For Cell and... May 2024CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but...
CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three β82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and β153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.
Topics: Phycobilisomes; Phycocyanin; Synechocystis; Bacterial Proteins; Phycobilins; Cyanobacteria
PubMed: 38319793
DOI: 10.1111/tpj.16666 -
International Journal of Molecular... Jun 2023The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that... (Review)
Review
The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that is found on the stromal side of thylakoid membranes in orderly arrays. Chromophore lyases catalyse the thioether bond between apoproteins and phycobilins of PBSs. Depending on the species, composition, spatial assembly, and, especially, the functional tuning of different phycobiliproteins mediated by linker proteins, PBSs can absorb light between 450 and 650 nm, making them efficient and versatile light-harvesting systems. However, basic research and technological innovations are needed, not only to understand their role in photosynthesis but also to realise the potential applications of PBSs. Crucial components including phycobiliproteins, phycobilins, and lyases together make the PBS an efficient light-harvesting system, and these provide a scheme to explore the heterologous synthesis of PBS. Focusing on these topics, this review describes the essential components needed for PBS assembly, the functional basis of PBS photosynthesis, and the applications of phycobiliproteins. Moreover, key technical challenges for heterologous biosynthesis of phycobiliproteins in chassis cells are discussed.
Topics: Phycobilisomes; Phycobilins; Phycobiliproteins; Photosynthesis; Rhodophyta
PubMed: 37298688
DOI: 10.3390/ijms24119733 -
Marine Drugs Aug 2023Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential... (Review)
Review
Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, to provide a detailed and thorough overview of the optimization of culture media elements, as well as various physical parameters, to improve the large-scale manufacturing of such bioactive molecules. The second section of the review offers systematic, deep and detailed data about the current main features of phycobiliproteins. In the ultimate section, the health and nutritional claims related to these bioactive pigments, explaining their noticeable potential for biotechnological uses in various fields, are examined.
Topics: Microalgae; Biotechnology; Coloring Agents; Commerce; Phycobiliproteins
PubMed: 37623721
DOI: 10.3390/md21080440 -
Bioresource Technology Nov 2019Microalgae biorefinery systems have been extensively studied from the perspective of resources, energy expenditure, biofuel production potential, and high-added value... (Review)
Review
Microalgae biorefinery systems have been extensively studied from the perspective of resources, energy expenditure, biofuel production potential, and high-added value products. The genus Spirulina (Arthrospira) stands out among the microalgae of commercial importance. It accounts for over 30% of biomass produced globally because of high protein concentration and, carotenoid and phycocyanin content. Spirulina cultivation can be used to reduce greenhouse gases and for effluent treatment. Furthermore, its cellular morphology facilitates biomass recovery, which contributes to the process cost reduction. Spirulina biomass is widely applicable in food, feed, cosmetics, biofertilizers, biofuels, and biomaterials. A feasibility analysis of Spirulina biorefinery would provide specific information for the decision-making for the improvement of the Spirulina production process. In that context, this review aimed to present a parameter assessment to contribute to the economic viability of Spirulina production in a biorefinery system.
Topics: Biofuels; Biomass; Microalgae; Phycocyanin; Spirulina
PubMed: 31422868
DOI: 10.1016/j.biortech.2019.121946 -
The FEBS Journal Aug 2022Blue-green algae, also known as cyanobacteria, contain some of the most efficient light-harvesting complexes known. These large, colourful complexes consist of...
Blue-green algae, also known as cyanobacteria, contain some of the most efficient light-harvesting complexes known. These large, colourful complexes consist of phycobiliproteins which are extremely valuable in the cosmetics, food, nutraceutical and pharmaceutical industries. Additionally, the colourful and fluorescent properties of phycobiliproteins can be modulated by metal ions, making them highly attractive as heavy metal sensors and heavy metal scavengers. Although the overall quenching ability metal ions have on phycobiliproteins is known, the mechanism of heavy metal binding to phycobiliproteins is not fully understood, limiting their widespread quantitative applications. Here, we show using high-resolution native mass spectrometry that phycobiliprotein complexes bind metal ions in different manners. Through monitoring the binding equilibria and metal-binding stoichiometry, we show in particular copper and silver to have drastic, yet different effects on phycobiliprotein structure, both copper and silver modulate the overall complex properties. Together, the data reveals the mechanisms by which metal ions can modulate phycobiliprotein properties which can be used as a basis for the future design of metal-related phycobiliprotein applications.
Topics: Copper; Cyanobacteria; Phycobiliproteins; Silver
PubMed: 35156751
DOI: 10.1111/febs.16396 -
Microbiological Reviews Sep 1993Photosynthetic organisms can acclimate to their environment by changing many cellular processes, including the biosynthesis of the photosynthetic apparatus. In this... (Review)
Review
Photosynthetic organisms can acclimate to their environment by changing many cellular processes, including the biosynthesis of the photosynthetic apparatus. In this article we discuss the phycobilisome, the light-harvesting apparatus of cyanobacteria and red algae. Unlike most light-harvesting antenna complexes, the phycobilisome is not an integral membrane complex but is attached to the surface of the photosynthetic membranes. It is composed of both the pigmented phycobiliproteins and the nonpigmented linker polypeptides; the former are important for absorbing light energy, while the latter are important for stability and assembly of the complex. The composition of the phycobilisome is very sensitive to a number of different environmental factors. Some of the filamentous cyanobacteria can alter the composition of the phycobilisome in response to the prevalent wavelengths of light in the environment. This process, called complementary chromatic adaptation, allows these organisms to efficiently utilize available light energy to drive photosynthetic electron transport and CO2 fixation. Under conditions of macronutrient limitation, many cyanobacteria degrade their phycobilisomes in a rapid and orderly fashion. Since the phycobilisome is an abundant component of the cell, its degradation may provide a substantial amount of nitrogen to nitrogen-limited cells. Furthermore, degradation of the phycobilisome during nutrient-limited growth may prevent photodamage that would occur if the cells were to absorb light under conditions of metabolic arrest. The interplay of various environmental parameters in determining the number of phycobilisomes and their structural characteristics and the ways in which these parameters control phycobilisome biosynthesis are fertile areas for investigation.
Topics: Adaptation, Physiological; Bacterial Proteins; Base Sequence; Chloroplasts; Cyanobacteria; Energy Metabolism; Environment; Eukaryota; Gene Expression Regulation; Genes, Bacterial; Genes, Plant; Intracellular Membranes; Light; Light-Harvesting Protein Complexes; Models, Genetic; Models, Molecular; Molecular Sequence Data; Mutation; Operon; Photosynthesis; Phycobilisomes; Plant Proteins; Protein Conformation; Protein Folding
PubMed: 8246846
DOI: 10.1128/mr.57.3.725-749.1993 -
Communications Biology Oct 2021C-phycocyanin (CPC), a blue pigment protein, is an indispensable component of giant phycobilisomes, which are light-harvesting antenna complexes in cyanobacteria that...
C-phycocyanin (CPC), a blue pigment protein, is an indispensable component of giant phycobilisomes, which are light-harvesting antenna complexes in cyanobacteria that transfer energy efficiently to photosystems I and II. X-ray crystallographic and electron microscopy (EM) analyses have revealed the structure of CPC to be a closed toroidal hexamer by assembling two trimers. In this study, the structural characterization of non-conventional octameric CPC is reported for the first time. Analyses of the crystal and cryogenic EM structures of the native CPC from filamentous thermophilic cyanobacterium Thermoleptolyngbya sp. O-77 unexpectedly illustrated the coexistence of conventional hexamer and novel octamer. In addition, an unusual dimeric state, observed via analytical ultracentrifugation, was postulated to be a key intermediate structure in the assemble of the previously unobserved octamer. These observations provide new insights into the assembly processes of CPCs and the mechanism of energy transfer in the light-harvesting complexes.
Topics: Bacterial Proteins; Cyanobacteria; Phycocyanin
PubMed: 34716405
DOI: 10.1038/s42003-021-02767-x -
The Plant Cell Oct 2024Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that... (Review)
Review
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Topics: Phycobiliproteins; Rhodophyta; Cyanobacteria; Light-Harvesting Protein Complexes; Phycobilisomes; Cryptophyta
PubMed: 38652697
DOI: 10.1093/plcell/koae126