-
Plasmid May 2023Plasmids are universally present in bacteria and play key roles in the dissemination of genes such as antibiotic resistance determinants. Major concepts in Plasmid... (Review)
Review
Plasmids are universally present in bacteria and play key roles in the dissemination of genes such as antibiotic resistance determinants. Major concepts in Plasmid Biology derive from the efforts to classify plasmids. Here, we review the main plasmid classification systems, starting by phenotype-based methods, such as fertility inhibition and incompatibility, followed by schemes based on a single gene (replicon type and MOB class), and finishing with recently developed approaches that use genetic distances between whole plasmid sequences. A comparison of the latter highlights significant differences between them. We further discuss the need for an operational definition of plasmid species that reveals their biological features, akin to plasmid taxonomic units (PTUs).
Topics: Plasmids; Bacteria; Anti-Bacterial Agents; Gene Transfer, Horizontal
PubMed: 37116631
DOI: 10.1016/j.plasmid.2023.102684 -
Microbiology Spectrum Feb 2015Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. It is thought that to reduce the cost of plasmid... (Review)
Review
Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. It is thought that to reduce the cost of plasmid carriage, only a fraction of a local population carries plasmids or is permissive to plasmid uptake. Plasmids provide various accessory traits which might be beneficial under particular conditions. The genetic variation generated by plasmid carriage within populations ensures the robustness toward environmental changes. Plasmid-mediated gene transfer plays an important role not only in the mobilization and dissemination of antibiotic resistance genes but also in the spread of degradative pathways and pathogenicity determinants of pathogens. Here we summarize the state-of-the-art methods to study the occurrence, abundance, and diversity of plasmids in environmental bacteria. Increasingly, cultivation-independent total-community DNA-based methods are being used to characterize and quantify the diversity and abundance of plasmids in relation to various biotic and abiotic factors. An improved understanding of the ecology of plasmids and their hosts is crucial in the development of intervention strategies for antibiotic-resistance-gene spread. We discuss the potentials and limitations of methods used to determine the host range of plasmids, as the ecology of plasmids is tightly linked to their hosts. The recent advances in sequencing technologies provide an enormous potential for plasmid classification, diversity, and evolution studies, but numerous challenges still exist.
Topics: Adaptation, Biological; Bacteria; Ecology; Environmental Microbiology; Gene Transfer, Horizontal; Genetic Variation; Host Specificity; Plasmids
PubMed: 26104560
DOI: 10.1128/microbiolspec.PLAS-0038-2014 -
EcoSal Plus Dec 2022In the late 1950s, a number of laboratories took up the study of plasmids once the discovery was made that extrachromosomal antibiotic resistance (R) factors are the... (Review)
Review
In the late 1950s, a number of laboratories took up the study of plasmids once the discovery was made that extrachromosomal antibiotic resistance (R) factors are the responsible agents for the transmissibility of multiple antibiotic resistance among the enterobacteria. The use of incompatibility for the classification of plasmids is now widespread. It seems clear now on the basis of the limited studies to date that the number of incompatibility groups of plasmids will likely be extremely large when one includes plasmids obtained from bacteria that are normal inhabitants of poorly studied natural environments. The presence of both linear chromosomes and linear plasmids is now established for several species. One of the more fascinating developments in plasmid biology was the discovery of linear plasmids in the 1980s. A remarkable feature of the Ti plasmids of Agrobacterium tumefaciens is the presence of two DNA transfer systems. A definitive demonstration that plasmids consisted of duplex DNA came from interspecies conjugal transfer of plasmids followed by separation of plasmid DNA from chromosomal DNA by equilibrium buoyant density centrifugation. The formation of channels for DNA movement and the actual steps involved in DNA transport offer many opportunities for the discovery of proteins with novel activities and for establishing fundamentally new concepts of macromolecular interactions between DNA and specific proteins, membranes, and the peptidoglycan matrix.
Topics: Plasmids; Agrobacterium tumefaciens; Plant Tumor-Inducing Plasmids; Bacteria; DNA, Bacterial
PubMed: 35373578
DOI: 10.1128/ecosalplus.esp-0028-2021 -
Microbial Genomics Aug 2018Large-scale bacterial population genetics studies are now routine due to cost-effective Illumina short-read sequencing. However, analysing plasmid content remains...
Large-scale bacterial population genetics studies are now routine due to cost-effective Illumina short-read sequencing. However, analysing plasmid content remains difficult due to incomplete assembly of plasmids. Bacterial isolates can contain any number of plasmids and assembly remains complicated due to the presence of repetitive elements. Numerous tools have been developed to analyse plasmids but the performance and functionality of the tools are variable. The MOB-suite was developed as a set of modular tools for reconstruction and typing of plasmids from draft assembly data to facilitate characterization of plasmids. Using a set of closed genomes with publicly available Illumina data, the MOB-suite identified contigs of plasmid origin with both high sensitivity and specificity (95 and 88 %, respectively). In comparison, plasmidfinder demonstrated high specificity (99 %) but limited sensitivity (50 %). Using the same dataset of 377 known plasmids, MOB-recon accurately reconstructed 207 plasmids so that they were assigned to a single grouping without other plasmid or chromosomal sequences, whereas plasmidSPAdes was only able to accurately reconstruct 102 plasmids. In general, plasmidSPAdes has a tendency to merge different plasmids together, with 208 plasmids undergoing merge events. The MOB-suite reduces the number of errors but produces more hybrid plasmids, with 84 plasmids undergoing both splits and merges. The MOB-suite also provides replicon typing similar to plasmidfinder but with the inclusion of relaxase typing and prediction of conjugation potential. The MOB-suite is written in Python 3 and is available from https://github.com/phac-nml/mob-suite.
Topics: Bacteria; Genome, Bacterial; Plasmids; Replicon; Sequence Analysis, DNA; Software
PubMed: 30052170
DOI: 10.1099/mgen.0.000206 -
Microbiology Spectrum Dec 2014The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the... (Review)
Review
The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell. Partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site, or prokaryotic centromere, on the plasmid or chromosome. One protein binds site-specifically to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid, via interactions with this partition complex inside the cell. For plasmids, this minimal cassette is sufficient to direct proper segregation in bacterial cells. There has been significant progress in the last several years in our understanding of partition mechanisms. Two general areas that have developed are (i) the structural biology of partition proteins and their interactions with DNA and (ii) the action and dynamics of the partition ATPases that drive the process. In addition, systems that use tubulin-like GTPases to partition plasmids have recently been identified. In this chapter, we concentrate on these recent developments and the molecular details of plasmid partition mechanisms.
Topics: Biological Transport; Cell Division; Plasmids
PubMed: 26104442
DOI: 10.1128/microbiolspec.PLAS-0023-2014 -
Philosophical Transactions of the Royal... Jan 2022As infectious agents of bacteria and vehicles of horizontal gene transfer, plasmids play a key role in bacterial ecology and evolution. Plasmid dynamics are shaped not... (Review)
Review
As infectious agents of bacteria and vehicles of horizontal gene transfer, plasmids play a key role in bacterial ecology and evolution. Plasmid dynamics are shaped not only by plasmid-host interactions but also by ecological interactions between plasmid variants. These interactions are complex: plasmids can co-infect the same cell and the consequences for the co-resident plasmid can be either beneficial or detrimental. Many of the biological processes that govern plasmid co-infection-from systems that exclude infection by other plasmids to interactions in the regulation of plasmid copy number-are well characterized at a mechanistic level. Modelling plays a central role in translating such mechanistic insights into predictions about plasmid dynamics and the impact of these dynamics on bacterial evolution. Theoretical work in evolutionary epidemiology has shown that formulating models of co-infection is not trivial, as some modelling choices can introduce unintended ecological assumptions. Here, we review how the biological processes that govern co-infection can be represented in a mathematical model, discuss potential modelling pitfalls, and analyse this model to provide general insights into how co-infection impacts ecological and evolutionary outcomes. In particular, we demonstrate how beneficial and detrimental effects of co-infection give rise to frequency-dependent selection on plasmid variants. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Topics: Bacteria; Coinfection; Gene Transfer, Horizontal; Humans; Plasmids
PubMed: 34839701
DOI: 10.1098/rstb.2020.0478 -
BioTechniques Sep 2021We present a modified alkaline lysis method for purification of plasmid DNA (pDNA) from bacterial extract using fractional precipitation with isopropanol (FPI). This...
We present a modified alkaline lysis method for purification of plasmid DNA (pDNA) from bacterial extract using fractional precipitation with isopropanol (FPI). This method includes two successive precipitations with 0.33 and 0.36 volumes of isopropanol and separates pDNA from total RNA and most of the lipopolysaccharides. Using different quality control tests, we demonstrate that plasmids purified with FPI show superior quality compared to plasmids prepared with commercial kits based on spin-column chromatography.
Topics: 2-Propanol; DNA, Bacterial; Fractional Precipitation; Plasmids; Ribonucleases
PubMed: 34392702
DOI: 10.2144/btn-2021-0018 -
Microbial Genomics Sep 2024Plasmids are extrachromosomal replicons which can quickly spread resistance and virulence genes between clinical pathogens. From the tens of thousands of currently... (Review)
Review
Plasmids are extrachromosomal replicons which can quickly spread resistance and virulence genes between clinical pathogens. From the tens of thousands of currently available plasmid sequences we know that overall plasmid diversity is structured, with related plasmids sharing a largely conserved 'backbone' of genes while being able to carry very different genetic cargo. Moreover, plasmid genomes can be structurally plastic and undergo frequent rearrangements. So, how can we quantify plasmid similarity? Answering this question requires practical efforts to sample natural variation as well as theoretical considerations of what defines a group of related plasmids. Here we consider the challenges of analysing and rationalising the current plasmid data deluge to define appropriate similarity thresholds.
Topics: Bacteria; Genetic Variation; Phylogeny; Plasmids
PubMed: 39264704
DOI: 10.1099/mgen.0.001290 -
Philosophical Transactions of the Royal... Jan 2022Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger....
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids-known as megaplasmids-are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Topics: Plasmids
PubMed: 34839707
DOI: 10.1098/rstb.2020.0472 -
Canadian Journal of Microbiology May 2018Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying... (Review)
Review
Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying the persistence of plasmids are incompletely understood. Bacterial plasmids may encode genes for traits that are sometimes beneficial to their hosts, such as antimicrobial resistance, virulence, heavy metal tolerance, and the catabolism of unique nutrient sources. In the absence of selection for these traits, however, plasmids generally impose a fitness cost on their hosts. As such, plasmid persistence presents a conundrum: models predict that costly plasmids will be lost over time or that beneficial plasmid genes will be integrated into the host genome. However, laboratory and comparative studies have shown that plasmids can persist for long periods, even in the absence of positive selection. Several hypotheses have been proposed to explain plasmid persistence, including host-plasmid co-adaptation, plasmid hitchhiking, cross-ecotype transfer, and high plasmid transfer rates, but there is no clear evidence that any one model adequately resolves the plasmid paradox.
Topics: Adaptation, Physiological; Bacteria; Evolution, Molecular; Models, Genetic; Plasmids
PubMed: 29562144
DOI: 10.1139/cjm-2017-0609