-
Cell Feb 2024Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex...
Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.
Topics: Arabidopsis Proteins; Chloroplasts; Cryoelectron Microscopy; DNA-Directed RNA Polymerases; Gene Expression Regulation, Plant; Plant Proteins; Plastids; Transcription, Genetic
PubMed: 38428394
DOI: 10.1016/j.cell.2024.01.036 -
Cell Feb 2024Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an...
Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.
Topics: Chloroplasts; Cryoelectron Microscopy; DNA-Directed RNA Polymerases; Nicotiana; Photosynthesis; Plastids
PubMed: 38428393
DOI: 10.1016/j.cell.2024.01.026 -
Current Biology : CB Apr 2018de Vries and Archibald introduce the topic of plastid genomes - prokaryotic genomes housed within eukaryotic algae and plants. (Review)
Review
de Vries and Archibald introduce the topic of plastid genomes - prokaryotic genomes housed within eukaryotic algae and plants.
Topics: Cyanobacteria; Evolution, Molecular; Genome, Plastid; Phylogeny; Plants; Plastids; Symbiosis
PubMed: 29689202
DOI: 10.1016/j.cub.2018.01.027 -
Biomolecules Nov 2021Plastids are membrane-bound organelles that bestow phototrophic abilities to eukaryotes [...].
Plastids are membrane-bound organelles that bestow phototrophic abilities to eukaryotes [...].
Topics: Plastids; Symbiosis; Biological Evolution
PubMed: 34827692
DOI: 10.3390/biom11111694 -
Biochimica Et Biophysica Acta Sep 2015Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has not surpassed plant biology. Nevertheless, reports on RIP in plants, and... (Review)
Review
Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has not surpassed plant biology. Nevertheless, reports on RIP in plants, and especially in chloroplasts, are still scarce. Of the four different families of intramembrane proteases, only two have been linked to chloroplasts so far, rhomboids and site-2 proteases (S2Ps). The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology, probably due to perturbations in jasmonic acid biosynthesis, which occurs in chloroplasts. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development, through a yet unknown mechanism. To date, the only known substrate of RIP in chloroplasts is a PHD transcription factor, located in the envelope. Upon proteolytic cleavage by an unknown protease, the soluble N-terminal domain of this protein is released from the membrane and relocates to the nucleus, where it activates the transcription of the ABA response gene ABI4. Continuing studies on these proteases and substrates, as well as identification of the genes responsible for different chloroplast mutant phenotypes, are expected to shed more light on the roles of intramembrane proteases in chloroplast biology.
Topics: Membrane Proteins; Peptide Hydrolases; Plastids; Proteolysis
PubMed: 25528366
DOI: 10.1016/j.bbabio.2014.12.006 -
Biochimica Et Biophysica Acta Sep 2015Plastids, such as chloroplasts, are widely distributed endosymbiotic organelles in plants and algae. Apart from their well-known functions in photosynthesis, they have... (Review)
Review
Plastids, such as chloroplasts, are widely distributed endosymbiotic organelles in plants and algae. Apart from their well-known functions in photosynthesis, they have roles in processes as diverse as signal sensing, fruit ripening, and seed development. As most plastid proteins are produced in the cytosol, plastids have developed dedicated translocon machineries for protein import, comprising the TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes. Multiple lines of evidence reveal that protein import via the TOC complex is actively regulated, based on the specific interplay between distinct receptor isoforms and diverse client proteins. In this review, we summarize recent advances in our understanding of protein import regulation, particularly in relation to control by the ubiquitin-proteasome system (UPS), and how such regulation changes plastid development. The diversity of plastid import receptors (and of corresponding preprotein substrates) has a determining role in plastid differentiation and interconversion. The controllable turnover of TOC components by the UPS influences the developmental fate of plastids, which is fundamentally linked to plant development. Understanding the mechanisms by which plastid protein import is controlled is critical to the development of breakthrough approaches to increase the yield, quality and stress tolerance of important crop plants, which are highly dependent on plastid development. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Topics: Chloroplast Proteins; Plastids; Proteasome Endopeptidase Complex; Protein Transport; Ubiquitin; Ubiquitination
PubMed: 25762164
DOI: 10.1016/j.bbabio.2015.02.017 -
Cells Oct 2020GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the... (Review)
Review
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1's role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Topics: Gene Expression Regulation, Plant; Plant Proteins; Plastids; Protein Binding; RNA, Chloroplast; Stress, Physiological
PubMed: 33081381
DOI: 10.3390/cells9102307 -
Plant Cell Reports Jul 2019Plant cells are characterized by a unique group of interconvertible organelles called plastids, which are descended from prokaryotic endosymbionts. The most studied... (Review)
Review
Plant cells are characterized by a unique group of interconvertible organelles called plastids, which are descended from prokaryotic endosymbionts. The most studied plastid type is the chloroplast, which carries out the ancestral plastid function of photosynthesis. During the course of evolution, plastid activities were increasingly integrated with cellular metabolism and functions, and plant developmental processes, and this led to the creation of new types of non-photosynthetic plastids. These include the chromoplast, a carotenoid-rich organelle typically found in flowers and fruits. Here, we provide an introduction to non-photosynthetic plastids, and then review the structures and functions of chromoplasts in detail. The role of chromoplast differentiation in fruit ripening in particular is explored, and the factors that govern plastid development are examined, including hormonal regulation, gene expression, and plastid protein import. In the latter process, nucleus-encoded preproteins must pass through two successive protein translocons in the outer and inner envelope membranes of the plastid; these are known as TOC and TIC (translocon at the outer/inner chloroplast envelope), respectively. The discovery of SP1 (suppressor of ppi1 locus1), which encodes a RING-type ubiquitin E3 ligase localized in the plastid outer envelope membrane, revealed that plastid protein import is regulated through the selective targeting of TOC complexes for degradation by the ubiquitin-proteasome system. This suggests the possibility of engineering plastid protein import in novel crop improvement strategies.
Topics: Chloroplast Proteins; Chloroplasts; Organelles; Plant Proteins; Plasmids; Plastids; Protein Transport
PubMed: 31079194
DOI: 10.1007/s00299-019-02420-2 -
Plant Physiology and Biochemistry : PPB Aug 2024In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and... (Review)
Review
In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin). The review is focused on the modulation of plastid capabilities at both transcriptional and post-translational levels at the crossroad between development and stress, with a particular attention to the chloroplast, because the most studied plastid type. The role of plastid-encoded and nuclear-encoded proteins for plastid development and stress responses, and the changes of plastid fate through the activity of stromules and plastoglobules, are discussed. Examples of plastid dynamism in response to soil stress agents (salinity, lead, cadmium, arsenic, and chromium) are described. Albinism and root greening are described based on the modulation activities of auxin and cytokinin. The physiological and functional responses of the sensory epidermal and vascular plastids to abiotic and biotic stresses along with their specific roles in stress sensing are described together with their potential modulation of retrograde signaling pathways. Future research perspectives include an in-depth study of sensory plastids to explore their potential for establishing a transgenerational memory to stress. Suggestions about anterograde and retrograde pathways acting at interspecific level and on the lipids of plastoglobules as a novel class of plastid morphogenic agents are provided.
Topics: Plastids; Plant Growth Regulators; Signal Transduction; Stress, Physiological; Plant Development
PubMed: 38861821
DOI: 10.1016/j.plaphy.2024.108813 -
The New Phytologist Oct 2019Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered... (Review)
Review
Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered into a number of secondary endosymbioses with diverse eukaryotic hosts. These events had major consequences on the evolution and diversification of life on Earth. Although almost all plastid diversity derives from a single endosymbiotic event, the analysis of nuclear genomes of plastid-bearing lineages has revealed a mosaic origin of plastid-related genes. In addition to cyanobacterial genes, plastids recruited for their functioning eukaryotic proteins encoded by the host nucleus and also bacterial proteins of noncyanobacterial origin. Therefore, plastid proteins and plastid-localised metabolic pathways evolved by tinkering and using gene toolkits from different sources. This mixed heritage seems especially complex in secondary algae containing green plastids, the acquisition of which appears to have been facilitated by many previous acquisitions of red algal genes (the 'red carpet hypothesis').
Topics: Biological Evolution; Gene Expression Regulation; Gene Transfer, Horizontal; Photosynthesis; Plastids; Symbiosis
PubMed: 31135958
DOI: 10.1111/nph.15965