-
Clinical Pharmacokinetics Dec 2022Olaparib, niraparib, rucaparib, and talazoparib are poly (ADP-ribose) polymerase (PARP) inhibitors approved for the treatment of ovarian, breast, pancreatic, and/or... (Review)
Review
Olaparib, niraparib, rucaparib, and talazoparib are poly (ADP-ribose) polymerase (PARP) inhibitors approved for the treatment of ovarian, breast, pancreatic, and/or prostate cancer. Poly (ADP-ribose) polymerase inhibitors are potent inhibitors of the PARP enzymes with comparable half-maximal inhibitory concentrations in the nanomolar range. Olaparib and rucaparib are orally dosed twice a day, extensively metabolized by cytochrome P450 enzymes, and inhibitors of several enzymes and drug transporters with a high risk for drug-drug interactions. Niraparib and talazoparib are orally dosed once a day with a lower risk for niraparib and a minimal risk for talazoparib to cause drug-drug interactions. All four PARP inhibitors show moderate-to-high interindividual variability in plasma exposure. Higher exposure is associated with an increase in toxicity, mostly hematological toxicity. For talazoparib, exposure-efficacy relationships have been described, but for olaparib, niraparib, and rucaparib this relationship remains inconclusive. Further studies are required to investigate exposure-response relationships to improve dosing of PARP inhibitors, in which therapeutic drug monitoring could play an important role. In this review, we give an overview of the pharmacokinetic properties of the four PARP inhibitors, including considerations for patients with renal dysfunction or hepatic impairment, the effect of food, and drug-drug interactions. Furthermore, we focus on the pharmacodynamics and summarize the available exposure-efficacy and exposure-toxicity relationships.
Topics: Female; Humans; Poly(ADP-ribose) Polymerase Inhibitors; Ribose; Ovarian Neoplasms; Poly(ADP-ribose) Polymerases; Adenosine Diphosphate
PubMed: 36219340
DOI: 10.1007/s40262-022-01167-6 -
Nature Metabolism May 2023Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To...
Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.
Topics: Ribose; Uridine; RNA; Glycolysis; Humans; Cell Line, Tumor; Oxidative Phosphorylation; Culture Media; Glucose; K562 Cells; Cell Proliferation; Pentose Phosphate Pathway
PubMed: 37198474
DOI: 10.1038/s42255-023-00774-2 -
Journal of Hematology & Oncology Oct 2022Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly... (Review)
Review
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through "synthetic lethality" mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Topics: Adenosine Diphosphate; Cell Cycle; Cell Cycle Checkpoints; DNA Damage; DNA Repair; Genomic Instability; Humans; Neoplasms; Poly(ADP-ribose) Polymerase Inhibitors; Ribose; Tumor Suppressor Protein p53
PubMed: 36253861
DOI: 10.1186/s13045-022-01360-x -
Science Progress 2014Although both the most popular form of synthetic biology (SB) and chemical synthetic biology (CSB) share the biotechnologically useful aim of making new forms of life,... (Review)
Review
Although both the most popular form of synthetic biology (SB) and chemical synthetic biology (CSB) share the biotechnologically useful aim of making new forms of life, SB does so by using genetic manipulation of extant microorganism, while CSB utilises classic chemical procedures in order to obtain biological structures which are non-existent in nature. The main query concerning CSB is the philosophical question: why did nature do this, and not that? The idea then is to synthesise alternative structures in order to understand why nature operated in such a particular way. We briefly present here some various examples of CSB, including those cases of nucleic acids synthesised with pyranose instead of ribose, and proteins with a reduced alphabet of amino acids; also we report the developing research on the "never born proteins" (NBP) and "never born RNA" (NBRNA), up to the minimal cell project, where the issue is the preparation of semi-synthetic cells that can perform the basic functions of biological cells.
Topics: Amino Acids; Artificial Cells; Directed Molecular Evolution; Humans; Imino Pyranoses; Models, Biological; Nucleic Acids; Peptide Nucleic Acids; Proteins; Ribose; Structure-Activity Relationship; Synthetic Biology
PubMed: 24800469
DOI: 10.3184/003685014X13921159313230 -
Cell Death & Disease Sep 2022Poly (ADP-ribose) polymerase (PARP) inhibitors are efficacious in treating platinum-sensitive ovarian cancer (OC), but demonstrate limited efficiency in patients with...
Poly (ADP-ribose) polymerase (PARP) inhibitors are efficacious in treating platinum-sensitive ovarian cancer (OC), but demonstrate limited efficiency in patients with platinum-resistant OC. Thus, further investigations into combined strategies that enhance the response to PARP inhibitors (PARPi) in platinum-resistant OC are required. The present study aimed to investigate the combined therapy of arsenic trioxide (ATO) with olaparib, a common PARPi, and determine how this synergistic cytotoxicity works in platinum-resistant OC cells. Functional assays demonstrated that the combined treatment of olaparib with ATO significantly suppressed cell proliferation and colony formation, and enhanced DNA damage as well as cell apoptosis in A2780-CIS and SKOV3-CIS cell lines. Results of the present study also demonstrated that a combination of olaparib with ATO increased lipid peroxidation and eventually triggered ferroptosis. Consistently, the combined treatment synergistically suppressed tumor growth in mice xenograft models. Mechanistically, ATO in combination with olaparib activated the AMPK α pathway and suppressed the expression levels of stearoyl-CoA desaturase 1 (SCD1). Collectively, results of the present study demonstrated that treatment with ATO enhanced the effects of olaparib in platinum-resistant OC.
Topics: AMP-Activated Protein Kinases; Adenosine Diphosphate; Animals; Apoptosis; Arsenic Trioxide; Carcinoma, Ovarian Epithelial; Cell Line, Tumor; Female; Ferroptosis; Humans; Mice; Ovarian Neoplasms; Phthalazines; Piperazines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Ribose; Stearoyl-CoA Desaturase
PubMed: 36163324
DOI: 10.1038/s41419-022-05257-y -
International Journal of Molecular... Mar 2023Mitochondrial dysfunction is considered an early event of Alzheimer disease (AD). D-ribose is a natural monosaccharide that exists in cells, especially in mitochondria,...
Mitochondrial dysfunction is considered an early event of Alzheimer disease (AD). D-ribose is a natural monosaccharide that exists in cells, especially in mitochondria, and can lead to cognitive dysfunction. However, the reason for this is unclear. Berberine (BBR) is an isoquinoline alkaloid that can target mitochondria and has great prospect in the treatment of AD. The methylation of PINK1 reinforces the burden of Alzheimer's pathology. This study explores the role of BBR and D-ribose in the mitophagy and cognitive function of AD related to DNA methylation. mice and cells were treated with D-ribose, BBR, and mitophagy inhibitor Mdivi-1 to observe their effects on mitochondrial morphology, mitophagy, neuron histology, AD pathology, animal behavior, and PINK1 methylation. The results showed that D-ribose induced mitochondrial dysfunction, mitophagy damage, and cognitive impairment. However, BBR inhibition of PINK1 promoter methylation can reverse the above effects caused by D-ribose, improve mitochondrial function, and restore mitophagy through the PINK1-Parkin pathway, thus reducing cognitive deficits and the burden of AD pathology. This experiment puts a new light on the mechanism of action of D-ribose in cognitive impairment and reveals new insights in the use of BBR for AD treatment.
Topics: Mice; Animals; Alzheimer Disease; Mitophagy; Berberine; Ribose; Protein Kinases; Ubiquitin-Protein Ligases
PubMed: 36982968
DOI: 10.3390/ijms24065896 -
International Journal of Molecular... Apr 2021At the focus of abiotic chemical reactions is the synthesis of ribose. No satisfactory explanation was provided as to the missing link between the prebiotic synthesis of... (Review)
Review
At the focus of abiotic chemical reactions is the synthesis of ribose. No satisfactory explanation was provided as to the missing link between the prebiotic synthesis of ribose and prebiotic RNA (preRNA). Hydrogen cyanide (HCN) is assumed to have been the principal precursor in the prebiotic formation of aldopentoses in the formose reaction and in the synthesis of ribose. Ribose as the best fitting aldopentose became the exclusive sugar component of RNA. The elevated yield of ribose synthesis at higher temperatures and its protection from decomposition could have driven the polymerization of the ribose-phosphate backbone and the coupling of nucleobases to the backbone. RNA could have come into being without the involvement of nucleotide precursors. The first nucleoside monophosphate is likely to have appeared upon the hydrolysis of preRNA contributed by the presence of reactive 2'-OH moieties in the preRNA chain. As a result of phosphorylation, nucleoside monophosphates became nucleoside triphosphates, substrates for the selective synthesis of genRNA.
Topics: Metabolic Networks and Pathways; Nucleotides; Phosphorylation; Polymerization; Purines; Pyrimidines; RNA; Ribose
PubMed: 33917807
DOI: 10.3390/ijms22083857 -
The Journal of Physical Chemistry. B Mar 2021Conformational changes of proteins upon ligand binding are usually explained in terms of several mechanisms including the induced fit, conformational selection, or their...
Conformational changes of proteins upon ligand binding are usually explained in terms of several mechanisms including the induced fit, conformational selection, or their mixtures. Due to the slow time scales, conventional molecular dynamics (cMD) simulations based on the atomistic models cannot easily simulate the open-to-closed conformational transition in proteins. In our previous study, we have developed an enhanced sampling scheme (generalized replica exchange with solute tempering selected surface charged residues: gREST_SSCR) for multidomain proteins and applied it to ligand-mediated conformational changes in the G134R mutant of ribose-binding protein (RBP) in solution. The free-energy landscape (FEL) of RBP in the presence of a ribose at the binding site included the open and closed states and two intermediates, open-like and closed-like forms. Only the open and open-like forms existed in the FEL without a ribose. In the current study, the coupling between the conformational changes and ligand binding is further investigated using coarse-grained MD, multiple atomistic cMD, and free-energy calculations. The ribose is easily dissociated from the binding site of wild-type RBP and RBP in the cMD simulations starting from the open and open-like forms. In contrast, it is stable at the binding site in the simulations from the closed and closed-like forms. The free-energy calculations provide the binding affinities of different structures, supporting the results of cMD simulations. Importantly, cMD simulations from the closed-like structures reveal transitions toward the closed one in the presence of a bound ribose. On the basis of the computational results, we propose a molecular mechanism in which conformational selection and induced fit happen in the first and second halves of the open-to-closed transition in RBP, respectively.
Topics: Carrier Proteins; Ligands; Molecular Dynamics Simulation; Protein Binding; Protein Conformation; Proteins; Ribose
PubMed: 33728914
DOI: 10.1021/acs.jpcb.0c11600 -
International Journal of Molecular... Jun 2024Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6... (Review)
Review
Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6 billion years ago when cellular life was about to come into being. Pre-Darwinian evolution assumes the development of hereditary elements but does not regard them as self-organizing processes. The presence of biochemical self-organization after the pre-Darwinian evolution did not justify distinguishing between different types of evolution. From the many possible solutions, evolution selected from among those stable reactions that led to catalytic networks, and under gradually changing external conditions produced a reproducible, yet constantly evolving and adaptable, living system. Major abiotic factors included sunlight, precipitation, air, minerals, soil and the Earth's atmosphere, hydrosphere and lithosphere. Abiotic sources of chemicals contributed to the formation of prebiotic RNA, the development of genetic RNA, the RNA World and the initial life forms on Earth and the transition of genRNA to the DNA Empire, and eventually to the multitude of life forms today. The transition from the RNA World to the DNA Empire generated new processes such as oxygenic photosynthesis and the hierarchical arrangement of processes involved in the transfer of genetic information. The objective of this work is to unite earlier work dealing with the formose, the origin and synthesis of ribose and RNA reactions that were published as a series of independent reactions. These reactions are now regarded as the first metabolic pathway.
Topics: RNA; Ribose; Origin of Life; Evolution, Molecular
PubMed: 38928433
DOI: 10.3390/ijms25126727 -
The American Journal of Cardiology Aug 2022Patients with heart failure with preserved ejection fraction (HFpEF) have few pharmacologic therapies, and it is not known if supplementing with ubiquinol and/or... (Randomized Controlled Trial)
Randomized Controlled Trial
Patients with heart failure with preserved ejection fraction (HFpEF) have few pharmacologic therapies, and it is not known if supplementing with ubiquinol and/or d-ribose could improve outcomes. The overall objective of this study was to determine if ubiquinol and/or d-ribose would reduce the symptoms and improve cardiac performance in patients with HFpEF. This was a phase 2 randomized, double-blind, placebo-controlled trial of 216 patients with HFpEF who were ≥ 50 years old with a left ventricular ejection fraction (EF) ≥ 50%. A total of 4 study groups received various supplements over 12 weeks: Group 1 received placebo ubiquinol capsules and d-ribose powder, Group 2 received ubiquinol capsules (600 mg/d) and placebo d-ribose powder, Group 3 received placebo ubiquinol capsules with d-ribose powder (15 g/d), and Group 4 received ubiquinol capsules and d-ribose powder. There were 7 outcome measures for this study: Kansas City Cardiomyopathy Questionnaire (KCCQ) clinical summary score, level of vigor using a subscale from the Profile of Mood States, EF, the ratio of mitral peak velocity of early filling to early diastolic mitral annular velocity (septal E/e' ratio), B-type natriuretic peptides, lactate/adenosine triphosphate ratio, and the 6-minute walk test. Treatment with ubiquinol and/or d-ribose significantly improved the KCCQ clinical summary score (17.30 to 25.82 points), vigor score (7.65 to 8.15 points), and EF (7.08% to 8.03%) and reduced B-type natriuretic peptides (-72.02 to -47.51) and lactate/adenosine triphosphate ratio (-4.32 to -3.35 × 10). There were no significant increases in the septal E/e' or the 6-minute walk test. In conclusion, ubiquinol and d-ribose reduced the symptoms of HFpEF and increased the EF. These findings support the use of these supplements in addition to standard therapeutic treatments for patients with HFpEF.
Topics: Adenosine Triphosphate; Capsules; Exercise Tolerance; Heart Failure; Humans; Lactates; Middle Aged; Powders; Ribose; Stroke Volume; Ubiquinone; Ventricular Function, Left
PubMed: 35644694
DOI: 10.1016/j.amjcard.2022.04.031